A Novel Approach to Identify Sources of Errors in IMERG for GPM Ground Validation

Jackson Tan Universities Space Research Association, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Jackson Tan in
Current site
Google Scholar
PubMed
Close
,
Walter A. Petersen Earth Science Office, NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Walter A. Petersen in
Current site
Google Scholar
PubMed
Close
, and
Ali Tokay University of Maryland, Baltimore County, Baltimore, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Ali Tokay in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The comparison of satellite and high-quality, ground-based estimates of precipitation is an important means to assess the confidence in satellite-based algorithms and to provide a benchmark for their continued development and future improvement. To these ends, it is beneficial to identify sources of estimation uncertainty, thereby facilitating a precise understanding of the origins of the problem. This is especially true for new datasets such as the Integrated Multisatellite Retrievals for GPM (IMERG) product, which provides global precipitation gridded at a high resolution using measurements from different sources and techniques. Here, IMERG is evaluated against a dense network of gauges in the mid-Atlantic region of the United States. A novel approach is presented, leveraging ancillary variables in IMERG to attribute the errors to the individual instruments or techniques within the algorithm. As a whole, IMERG exhibits some misses and false alarms for rain detection, while its rain-rate estimates tend to overestimate drizzle and underestimate heavy rain with considerable random error. Tracing the errors to their sources, the most reliable IMERG estimates come from passive microwave satellites, which in turn exhibit a hierarchy of performance. The morphing technique has comparable proficiency with the less skillful satellites, but infrared estimations perform poorly. The approach here demonstrated that, underlying the overall reasonable performance of IMERG, different sources have different reliability, thus enabling both IMERG users and developers to better recognize the uncertainty in the estimate. Future validation efforts are urged to adopt such a categorization to bridge between gridded rainfall and instantaneous satellite estimates.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0079.s1.

Corresponding author address: Jackson Tan, NASA Goddard Space Flight Center, Code 613, Building 33, Room C327, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: jackson.tan@nasa.gov

This article is included in the Global Precipitation Measurement (GPM) special collection.

Abstract

The comparison of satellite and high-quality, ground-based estimates of precipitation is an important means to assess the confidence in satellite-based algorithms and to provide a benchmark for their continued development and future improvement. To these ends, it is beneficial to identify sources of estimation uncertainty, thereby facilitating a precise understanding of the origins of the problem. This is especially true for new datasets such as the Integrated Multisatellite Retrievals for GPM (IMERG) product, which provides global precipitation gridded at a high resolution using measurements from different sources and techniques. Here, IMERG is evaluated against a dense network of gauges in the mid-Atlantic region of the United States. A novel approach is presented, leveraging ancillary variables in IMERG to attribute the errors to the individual instruments or techniques within the algorithm. As a whole, IMERG exhibits some misses and false alarms for rain detection, while its rain-rate estimates tend to overestimate drizzle and underestimate heavy rain with considerable random error. Tracing the errors to their sources, the most reliable IMERG estimates come from passive microwave satellites, which in turn exhibit a hierarchy of performance. The morphing technique has comparable proficiency with the less skillful satellites, but infrared estimations perform poorly. The approach here demonstrated that, underlying the overall reasonable performance of IMERG, different sources have different reliability, thus enabling both IMERG users and developers to better recognize the uncertainty in the estimate. Future validation efforts are urged to adopt such a categorization to bridge between gridded rainfall and instantaneous satellite estimates.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0079.s1.

Corresponding author address: Jackson Tan, NASA Goddard Space Flight Center, Code 613, Building 33, Room C327, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: jackson.tan@nasa.gov

This article is included in the Global Precipitation Measurement (GPM) special collection.

Supplementary Materials

    • Supplemental Materials (RAR 2.58 MB)
Save
  • AghaKouchak, A., Mehran A. , Norouzi H. , and Behrangi A. , 2012: Systematic and random error components in satellite precipitation data sets. Geophys. Res. Lett., 39, L09406, doi:10.1029/2012GL051592.

    • Search Google Scholar
    • Export Citation
  • Bharti, V., and Singh C. , 2015: Evaluation of error in TRMM 3B42V7 precipitation estimates over the Himalayan region. J. Geophys. Res. Atmos., 120, 12 458–12 473, doi:10.1002/2015JD023779.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2013a: Similarity and difference of the two successive V6 and V7 TRMM Multisatellite Precipitation Analysis performance over China. J. Geophys. Res. Atmos., 118, 13 060–13 074, doi:10.1002/2013JD019964.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2013b: Evaluation of the successive V6 and V7 TRMM Multisatellite Precipitation Analysis over the continental United States. Water Resour. Res., 49, 8174–8186, doi:10.1002/2012WR012795.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., Janowiak J. E. , and Kidd C. , 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 47–64, doi:10.1175/BAMS-88-1-47.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., Meng J. , Rodell M. , and Houser P. , 2005: Analysis of multiple precipitation products and preliminary assessment of their impact on Global Land Data Assimilation System land surface states. J. Hydrometeor., 6, 573–598, doi:10.1175/JHM437.1.

    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., Hong Y. , Flamig Z. L. , Li L. , and Wang J. , 2010: Intercomparison of rainfall estimates from radar, satellite, gauge, and combinations for a season of record rainfall. J. Appl. Meteor. Climatol., 49, 437–452, doi:10.1175/2009JAMC2302.1.

    • Search Google Scholar
    • Export Citation
  • Guo, H., Chen S. , Bao A. , Behrangi A. , Hong Y. , Ndayisaba F. , Hu J. , and Stepanian P. M. , 2016: Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China. Atmos. Res., 176–177, 121–133, doi:10.1016/j.atmosres.2016.02.020.

    • Search Google Scholar
    • Export Citation
  • Habib, E., Henschke A. , and Adler R. F. , 2009: Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana, USA. Atmos. Res., 94, 373–388, doi:10.1016/j.atmosres.2009.06.015.

    • Search Google Scholar
    • Export Citation
  • Habib, E., Haile A. T. , Tian Y. , and Joyce R. J. , 2012: Evaluation of the high-resolution CMORPH satellite rainfall product using dense rain gauge observations and radar-based estimates. J. Hydrometeor., 13, 1784–1798, doi:10.1175/JHM-D-12-017.1.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., Hsu K.-L. , Sorooshian S. , and Gao X. , 2004: Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. J. Appl. Meteor., 43, 1834–1853, doi:10.1175/JAM2173.1.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., and Huffman G. J. , 2008: Investigating error metrics for satellite rainfall data at hydrologically relevant scales. J. Hydrometeor., 9, 563–575, doi:10.1175/2007JHM925.1.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701–722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38–55, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Bolvin D. T. , Braithwaite D. , Hsu K. , Joyce R. , Kidd C. , Nelkin E. J. , and Xie P. , 2015: NASA Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 4.5, 30 pp. [Available online at http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.]

  • Joyce, R. J., and Xie P. , 2011: Kalman filter–based CMORPH. J. Hydrometeor., 12, 1547–1563, doi:10.1175/JHM-D-11-022.1.

  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487–503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kachi, M., Kubota T. , Aonashi K. , Ushio T. , Shige S. , Yamamoto M. , Mega T. , and Oki R. , 2014: Recent improvements in the Global Satellite Mapping of Precipitation (GSMaP). 2014 Int. IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, IEEE, 3762–3765, doi:10.1109/IGARSS.2014.6947302.

  • Kirstetter, P.-E., and Coauthors, 2012: Toward a framework for systematic error modeling of spaceborne precipitation radar with NOAA/NSSL ground radar–based National Mosaic QPE. J. Hydrometeor., 13, 1285–1300, doi:10.1175/JHM-D-11-0139.1.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., Ciach G. J. , McCollum J. R. , and Bacotiu C. , 2000: Initial validation of the Global Precipitation Climatology Project monthly rainfall over the United States. J. Appl. Meteor., 39, 1071–1086, doi:10.1175/1520-0450(2000)039<1071:IVOTGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 2259–2275, doi:10.1109/TGRS.2007.895337.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., Ushio T. , Shige S. , Kida S. , Kachi M. , and Okamoto K. , 2009: Verification of high-resolution satellite-based rainfall estimates around Japan using a gauge-calibrated ground-radar dataset. J. Meteor. Soc. Japan, 87A, 203–222, doi:10.2151/jmsj.87A.203.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 1801–1820, doi:10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Randel D. L. , Kulie M. , Wang N.-Y. , Ferraro R. , Joseph Munchak S. , and Petkovic V. , 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 2265–2280, doi:10.1175/JTECH-D-15-0039.1.

    • Search Google Scholar
    • Export Citation
  • Li, Z., Yang D. , and Hong Y. , 2013: Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River. J. Hydrol., 500, 157–169, doi:10.1016/j.jhydrol.2013.07.023.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2016: Comparison of Integrated Multisatellite Retrievals for GPM (IMERG) and TRMM Multisatellite Precipitation Analysis (TMPA) monthly precipitation products: Initial results. J. Hydrometeor., 17, 777–790, doi:10.1175/JHM-D-15-0068.1.

    • Search Google Scholar
    • Export Citation
  • Maggioni, V., Sapiano M. R. P. , Adler R. F. , Tian Y. , and Huffman G. J. , 2014: An error model for uncertainty quantification in high-time-resolution precipitation products. J. Hydrometeor., 15, 1274–1292, doi:10.1175/JHM-D-13-0112.1.

    • Search Google Scholar
    • Export Citation
  • Mei, Y., Anagnostou E. N. , Nikolopoulos E. I. , and Borga M. , 2014: Error analysis of satellite precipitation products in mountainous basins. J. Hydrometeor., 15, 1778–1793, doi:10.1175/JHM-D-13-0194.1.

    • Search Google Scholar
    • Export Citation
  • NASA PPS, 2016: Precipitation Processing System Global Precipitation Measurement: File specification for GPM products, version 4.01 TKIO 3.70.8, 1381 pp. [Available online at ftp://gpmweb2.pps.eosdis.nasa.gov/pub/GPMfilespec/filespec.GPM.V1.pdf.]

  • Roca, R., Chambon P. , Jobard I. , Kirstetter P.-E. , Gosset M. , and Bergès J. C. , 2010: Comparing satellite and surface rainfall products over West Africa at meteorologically relevant scales during the AMMA campaign using error estimates. J. Appl. Meteor. Climatol., 49, 715–731, doi:10.1175/2009JAMC2318.1.

    • Search Google Scholar
    • Export Citation
  • Sapiano, M. R. P., 2010: An evaluation of high resolution precipitation products at low resolution. Int. J. Climatol., 30, 1416–1422, doi:10.1002/joc.1961.

    • Search Google Scholar
    • Export Citation
  • Sapiano, M. R. P., and Arkin P. A. , 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10, 149–166, doi:10.1175/2008JHM1052.1.

    • Search Google Scholar
    • Export Citation
  • Stampoulis, D., and Anagnostou E. N. , 2012: Evaluation of global satellite rainfall products over continental Europe. J. Hydrometeor., 13, 588–603, doi:10.1175/JHM-D-11-086.1.

    • Search Google Scholar
    • Export Citation
  • Tang, G., Ma Y. , Long D. , Zhong L. , and Hong Y. , 2016a: Evaluation of GPM Day-1 IMERG and TMPA version-7 legacy products over mainland China at multiple spatiotemporal scales. J. Hydrol., 533, 152–167, doi:10.1016/j.jhydrol.2015.12.008.

    • Search Google Scholar
    • Export Citation
  • Tang, G., Zeng Z. , Long D. , Guo X. , Yong B. , Zhang W. , and Hong Y. , 2016b: Statistical and hydrological comparisons between TRMM and GPM level-3 products over a midlatitude basin: Is day-1 IMERG a good successor for TMPA 3B42V7? J. Hydrometeor., 17, 121–137, doi:10.1175/JHM-D-15-0059.1.

    • Search Google Scholar
    • Export Citation
  • Tang, L., Tian Y. , Yan F. , and Habib E. , 2015: An improved procedure for the validation of satellite-based precipitation estimates. Atmos. Res., 163, 61–73, doi:10.1016/j.atmosres.2014.12.016.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Peters-Lidard C. D. , 2007: Systematic anomalies over inland water bodies in satellite-based precipitation estimates. Geophys. Res. Lett., 34, L14403, doi:10.1029/2007GL030787.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Peters-Lidard C. D. , 2010: A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett., 37, L24407, doi:10.1029/2010GL046008.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., Peters-Lidard C. D. , Choudhury B. J. , and Garcia M. , 2007: Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications. J. Hydrometeor., 8, 1165–1183, doi:10.1175/2007JHM859.1.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Coauthors, 2009: Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res., 114, D24101, doi:10.1029/2009JD011949.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., Peters-Lidard C. D. , Adler R. F. , Kubota T. , and Ushio T. , 2010: Evaluation of GSMaP precipitation estimates over the contiguous United States. J. Hydrometeor., 11, 566–574, doi:10.1175/2009JHM1190.1.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., Huffman G. J. , Adler R. F. , Tang L. , Sapiano M. , Maggioni V. , and Wu H. , 2013: Modeling errors in daily precipitation measurements: Additive or multiplicative? Geophys. Res. Lett., 40, 2060–2065, doi:10.1002/grl.50320.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., Nearing G. S. , Peters-Lidard C. D. , Harrison K. W. , and Tang L. , 2016: Performance metrics, error modeling, and uncertainty quantification. Mon. Wea. Rev., 144, 607–613, doi:10.1175/MWR-D-15-0087.1.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., Roche R. J. , and Bashor P. G. , 2014: An experimental study of spatial variability of rainfall. J. Hydrometeor., 15, 801–812, doi:10.1175/JHM-D-13-031.1.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., and Miller S. D. , 2005: Toward improved characterization of remotely sensed precipitation regimes with MODIS/AMSR-E blended data techniques. IEEE Trans. Geosci. Remote Sens., 43, 1059–1069, doi:10.1109/TGRS.2004.841627.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and Krajewski W. F. , 2007: Evaluation of the research version TMPA three-hourly 0.25° × 0.25° rainfall estimates over Oklahoma. Geophys. Res. Lett., 34, L05402, doi:10.1029/2006GL029147.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., Mandapaka P. V. , Krajewski W. F. , and Moore R. J. , 2008: Rainfall and sampling uncertainties: A rain gauge perspective. J. Geophys. Res., 113, D11102, doi:10.1029/2007JD009214.

    • Search Google Scholar
    • Export Citation
  • Xue, X., Hong Y. , Limaye A. S. , Gourley J. J. , Huffman G. J. , Khan S. I. , Dorji C. , and Chen S. , 2013: Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? J. Hydrol., 499, 91–99, doi:10.1016/j.jhydrol.2013.06.042.

    • Search Google Scholar
    • Export Citation
  • Yong, B., and Coauthors, 2014: Intercomparison of the version-6 and version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? J. Hydrol., 508, 77–87, doi:10.1016/j.jhydrol.2013.10.050.

    • Search Google Scholar
    • Export Citation
  • Yong, B., Liu D. , Gourley J. J. , Tian Y. , Huffman G. J. , Ren L. , and Hong Y. , 2015: Global view of real-time TRMM Multisatellite Precipitation Analysis: Implications for its successor Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 96, 283–296, doi:10.1175/BAMS-D-14-00017.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) System: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 1321–1338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Qi Y. , Howard K. , Langston C. , and Kaney B. , 2012: Radar quality index (RQI)—A combined measure of beam blockage and VPR effects in a national network. IAHS Publ., 351, 388–393.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3574 1373 76
PDF Downloads 1501 253 45