Impact of Arctic Wetlands on the Climate System: Model Sensitivity Simulations with the MIROC5 AGCM and a Snow-Fed Wetland Scheme

Tomoko Nitta Institute of Industrial Science, University of Tokyo, Tokyo, Japan

Search for other papers by Tomoko Nitta in
Current site
Google Scholar
PubMed
Close
,
Kei Yoshimura Institute of Industrial Science, and Atmosphere and Ocean Research Institute, University of Tokyo, Tokyo, Japan

Search for other papers by Kei Yoshimura in
Current site
Google Scholar
PubMed
Close
, and
Ayako Abe-Ouchi Atmosphere and Ocean Research Institute, University of Tokyo, Tokyo, Japan

Search for other papers by Ayako Abe-Ouchi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Wetlands cover large areas of the middle and high latitudes and influence the surface water and energy budget, surface hydrology, and the climate system. In this study, a scheme implicitly representing a snow-fed wetland, in which snowmelt can be stored with consideration of subgrid terrain complexity, was implemented in the Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO) land surface model. An atmospheric general circulation model (AGCM) experiment was conducted using the Model for Interdisciplinary Research on Climate, version 5 (MIROC5), with and without the wetland scheme, with the main aim of reducing the model bias of warm and dry boreal summer at mid- to high latitudes. The experiment showed not only a better surface hydrology but also a weaker land–atmosphere coupling strength and larger (smaller) latent (sensible) heat flux due to the delayed snowmelt runoff. The summer warm and dry bias was partially improved over snowy and flat areas, particularly over much of western Eurasia and North America, without an apparent deterioration of simulated surface hydrology and climate over the rest of the land in the other seasons; the mean absolute error of 2-m air temperature and precipitation over land at 45°–90°N in summer decreased by 19% and 4%, respectively. The next step of model development will involve implementing an explicit representation of subgrid-scale surface water and related processes.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tomoko Nitta, t-nitta@iis.u-tokyo.ac.jp

Abstract

Wetlands cover large areas of the middle and high latitudes and influence the surface water and energy budget, surface hydrology, and the climate system. In this study, a scheme implicitly representing a snow-fed wetland, in which snowmelt can be stored with consideration of subgrid terrain complexity, was implemented in the Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO) land surface model. An atmospheric general circulation model (AGCM) experiment was conducted using the Model for Interdisciplinary Research on Climate, version 5 (MIROC5), with and without the wetland scheme, with the main aim of reducing the model bias of warm and dry boreal summer at mid- to high latitudes. The experiment showed not only a better surface hydrology but also a weaker land–atmosphere coupling strength and larger (smaller) latent (sensible) heat flux due to the delayed snowmelt runoff. The summer warm and dry bias was partially improved over snowy and flat areas, particularly over much of western Eurasia and North America, without an apparent deterioration of simulated surface hydrology and climate over the rest of the land in the other seasons; the mean absolute error of 2-m air temperature and precipitation over land at 45°–90°N in summer decreased by 19% and 4%, respectively. The next step of model development will involve implementing an explicit representation of subgrid-scale surface water and related processes.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tomoko Nitta, t-nitta@iis.u-tokyo.ac.jp
Save
  • Balsamo, G., R. Salgado, E. Dutra, S. Boussetta, T. Stockdale, and M. Potes, 2012: On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model. Tellus, 64A, 15829, doi:10.3402/tellusa.v64i0.15829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2004: Understanding hydrometeorology using global models. Bull. Amer. Meteor. Soc., 85, 16731688, doi:10.1175/BAMS-85-11-1673.

  • Beven, K. J., and M. J. Kirkby, 1979: Physically based, variable contribution area model of basin hydrology. Hydrol. Sci. Bull., 24, 4369, doi:10.1080/02626667909491834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowling, L. C., and D. P. Lettenmaier, 2010: Modeling the effects of lakes and wetlands on the water balance of arctic environments. J. Hydrometeor., 11, 276295, doi:10.1175/2009JHM1084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campoy, A., A. Ducharne, F. Cheruy, F. Hourdin, J. Polcher, and J. C. Dupont, 2013: Response of land surface fluxes and precipitation to different soil bottom hydrological conditions in a general circulation model. J. Geophys. Res. Atmos., 118, 10 72510 739, doi:10.1002/jgrd.50627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheruy, F., J. L. Dufresne, F. Hourdin, and A. Ducharne, 2014: Role of clouds and land–atmosphere coupling in midlatitude continental summer warm biases and climate change amplification in CMIP5 simulations. Geophys. Res. Lett., 41, 64936500, doi:10.1002/2014GL061145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and F. Boberg, 2012: Temperature dependent climate projection deficiencies in CMIP5 models. Geophys. Res. Lett., 39, L24705, doi:10.1029/2012GL053650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture-climate coupling. Geophys. Res. Lett., 38, L16702, doi:10.1029/2011GL048268.

  • Ferguson, C. R., E. F. Wood, and R. K. Vinukollu, 2012: A global intercomparison of modeled and observed land–atmosphere coupling. J. Hydrometeor., 13, 749784, doi:10.1175/JHM-D-11-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley, and X. Huang, 2010: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ., 114, 168182, doi:10.1016/j.rse.2009.08.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirabayashi, Y., S. Kanae, S. Emori, T. Oki, and M. Kimoto, 2008: Global projections of changing risks of floods and droughts in a changing climate. Hydrol. Sci. J., 53, 754772, doi:10.1623/hysj.53.4.754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Kirschke, S., and Coauthors, 2013: Three decades of global methane sources and sinks. Nat. Geosci., 6, 813823, doi:10.1038/ngeo1955.

  • Kleinen, T., V. Brovkin, and R. J. Schuldt, 2012: A dynamic model of wetland extent and peat accumulation: Results for the Holocene. Biogeosciences, 9, 235248, doi:10.5194/bg-9-235-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, doi:10.1175/JHM510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krinner, G., 2003: Impact of lakes and wetlands on boreal climate. J. Geophys. Res., 108, 4520, doi:10.1029/2002JD002597.

  • Lehner, B., and P. Döll, 2004: Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol., 296, 122, doi:10.1016/j.jhydrol.2004.03.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and W. Takeuchi, 2016: Land surface water coverage estimation with PALSAR and AMSR-E for large scale flooding detection. Terr. Atmos. Oceanic Sci., 27, 473480, doi:10.3319/TAO.2016.01.06.01(ISRS).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. Y., W. A. Dorigo, R. M. Parinussa, R. A. M. de Jeu, W. Wagner, M. F. McCabe, J. P. Evans, and A. I. J. M. van Dijk, 2012: Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ., 123, 280297, doi:10.1016/j.rse.2012.03.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melton, J. R., R. Wania, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, and C. A. Avis, 2013: Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences, 10, 753788, doi:10.5194/bg-10-753-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, B., and S. I. Seneviratne, 2014: Systematic land climate and evapotranspiration biases in CMIP5 simulations. Geophys. Res. Lett., 41, 128134, doi:10.1002/2013GL058055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2013: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrol. Earth Syst. Sci., 17, 37073720, doi:10.5194/hess-17-3707-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ngo-Duc, T., T. Oki, S. Kanae, and T. Ngo, 2007: A variable stream flow velocity method for global river routing model: Model description and preliminary results. Hydrol. Earth Syst. Sci., 4, 43894414, doi:10.5194/hessd-4-4389-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., and Coauthors, 2014: Representing variability in subgrid snow cover and snow depth in a global land model: Offline validation. J. Climate, 27, 33183330, doi:10.1175/JCLI-D-13-00310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., K. Yoshimura, and A. Abe-Ouchi, 2015: A sensitivity study of a simple wetland scheme for improvements in the representation of surface hydrology and decrease of surface air temperature bias (in Japanese). J. Japan Soc. Civ. Eng., 71, 995960, doi:10.2208/jscejhe.71.I_955.

    • Search Google Scholar
    • Export Citation
  • Oki, T., K. Musiake, H. Matsuyama, and K. Masuda, 1995: Global atmospheric water balance and runoff from large river basins. Hydrol. Processes, 9, 655678, doi:10.1002/hyp.3360090513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pokhrel, Y. N., N. Hanasaki, P. J.-F. Yeh, T. J. Yamada, S. Kanae, and T. Oki, 2012: Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat. Geosci., 5, 389392, doi:10.1038/ngeo1476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prigent, C., F. Papa, F. Aires, W. B. Rossow, and E. Matthews, 2007: Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J. Geophys. Res., 112, D12107, doi:10.1029/2006JD007847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Climate, 9, 676705, doi:10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture-climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2013: Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Geophys. Res. Lett., 40, 52125217, doi:10.1002/grl.50956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shabanov, N. V., and Coauthors, 2005: Analysis and optimization of the MODIS leaf area index algorithm retrievals over broadleaf forests. IEEE Trans. Geosci. Remote Sens., 43, 18551865, doi:10.1109/TGRS.2005.852477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stacke, T., and S. Hagemann, 2012: Development and evaluation of a global dynamical wetlands extent scheme. Hydrol. Earth Syst. Sci., 16, 29152933, doi:10.5194/hess-16-2915-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takata, K., S. Emori, and T. Watanabe, 2003: Development of the minimal advanced treatments of surface interaction and runoff. Global Planet. Change, 38, 209222, doi:10.1016/S0921-8181(03)00030-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takata, K., K. Saito, and T. Yasunari, 2009: Changes in the Asian monsoon climate during 1700–1850 induced by preindustrial cultivation. Proc. Natl. Acad. Sci. USA, 106, 95869589, doi:10.1073/pnas.0807346106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Hurk, B., and Coauthors, 2016: LS3MIP (v1.0) contribution to CMIP6: The Land Surface, Snow and Soil moisture Model Intercomparison Project—Aims, setup and expected outcome. Geosci. Model Dev., 9, 28092832, doi:10.5194/gmd-9-2809-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, W., W. Dorigo, R. de Jeu, D. Fernandez, J. Benveniste, E. Haas, and M. Ertl, 2012: Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. I-7, International Society for Photogrammetry and Remote Sensing, 315–321.

  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, doi:10.1175/2010JCLI3679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wik, M., R. K. Varner, K. W. Anthony, S. MacIntyre, and D. Bastviken, 2016: Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci., 9, 99106, doi:10.1038/ngeo2578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamada, T. J., S. Kanae, T. Oki, and R. D. Koster, 2013: Seasonal variation of land–atmosphere coupling strength over the West African monsoon region in an atmospheric general circulation model. Hydrol. Sci. J., 58, 12761286, doi:10.1080/02626667.2013.814914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshimura, K., T. Sakimura, T. Oki, S. Kanae, and S. Seto, 2008: Toward flood risk prediction: A statistical approach using a 29-year river discharge simulation over Japan. Hydrol. Res. Lett., 2, 2226, doi:10.3178/hrl.2.22.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1854 1051 109
PDF Downloads 451 64 5