Comparison of Probabilistic Quantitative Precipitation Forecasts from Two Postprocessing Mechanisms

Yu Zhang National Weather Service, Silver Spring, Maryland

Search for other papers by Yu Zhang in
Current site
Google Scholar
PubMed
Close
,
Limin Wu Lynker Technologies, and National Weather Service, Silver Spring, Maryland

Search for other papers by Limin Wu in
Current site
Google Scholar
PubMed
Close
,
Michael Scheuerer Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Michael Scheuerer in
Current site
Google Scholar
PubMed
Close
,
John Schaake Annapolis, Maryland

Search for other papers by John Schaake in
Current site
Google Scholar
PubMed
Close
, and
Cezar Kongoli Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Cezar Kongoli in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This article compares the skill of medium-range probabilistic quantitative precipitation forecasts (PQPFs) generated via two postprocessing mechanisms: 1) the mixed-type meta-Gaussian distribution (MMGD) model and 2) the censored shifted Gamma distribution (CSGD) model. MMGD derives the PQPF by conditioning on the mean of raw ensemble forecasts. CSGD, on the other hand, is a regression-based mechanism that estimates PQPF from a prescribed distribution by adjusting the climatological distribution according to the mean, spread, and probability of precipitation (POP) of raw ensemble forecasts. Each mechanism is applied to the reforecast of the Global Ensemble Forecast System (GEFS) to yield a postprocessed PQPF over lead times between 24 and 72 h. The outcome of an evaluation experiment over the mid-Atlantic region of the United States indicates that the CSGD approach broadly outperforms the MMGD in terms of both the ensemble mean and the reliability of distribution, although the performance gap tends to be narrow, and at times mixed, at higher precipitation thresholds (>5 mm). Analysis of a rare storm event demonstrates the superior reliability and sharpness of the CSGD PQPF and underscores the issue of overforecasting by the MMGD PQPF. This work suggests that the CSGD’s incorporation of ensemble spread and POP does help enhance its skill, particularly for light forecast amounts, but CSGD’s model structure and its use of optimization in parameter estimation likely play a more determining role in its outperformance.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yu Zhang, yu.zhang@noaa.gov

Abstract

This article compares the skill of medium-range probabilistic quantitative precipitation forecasts (PQPFs) generated via two postprocessing mechanisms: 1) the mixed-type meta-Gaussian distribution (MMGD) model and 2) the censored shifted Gamma distribution (CSGD) model. MMGD derives the PQPF by conditioning on the mean of raw ensemble forecasts. CSGD, on the other hand, is a regression-based mechanism that estimates PQPF from a prescribed distribution by adjusting the climatological distribution according to the mean, spread, and probability of precipitation (POP) of raw ensemble forecasts. Each mechanism is applied to the reforecast of the Global Ensemble Forecast System (GEFS) to yield a postprocessed PQPF over lead times between 24 and 72 h. The outcome of an evaluation experiment over the mid-Atlantic region of the United States indicates that the CSGD approach broadly outperforms the MMGD in terms of both the ensemble mean and the reliability of distribution, although the performance gap tends to be narrow, and at times mixed, at higher precipitation thresholds (>5 mm). Analysis of a rare storm event demonstrates the superior reliability and sharpness of the CSGD PQPF and underscores the issue of overforecasting by the MMGD PQPF. This work suggests that the CSGD’s incorporation of ensemble spread and POP does help enhance its skill, particularly for light forecast amounts, but CSGD’s model structure and its use of optimization in parameter estimation likely play a more determining role in its outperformance.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yu Zhang, yu.zhang@noaa.gov
Save
  • Ajami, N. K., G. M. Hornberger, and D. L. Sunding, 2008: Sustainable water resource management under hydrological uncertainty. Water Resour. Res., 44, W11406, doi:10.1029/2007WR006736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A., and R. Kuligowski, 1998: Orographic effects during a severe wintertime rainstorm in the Appalachian Mountains. Mon. Wea. Rev., 126, 26482672, doi:10.1175/1520-0493(1998)126<2648:OEDASW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. D., L. Wu, M. He, S. Regonda, H. Lee, and D.-J. Seo, 2014: Verification of temperature, precipitation, and streamflow forecasts from the NOAA/NWS Hydrologic Ensemble Forecast Service (HEFS): 1. Experimental design and forcing verification. J. Hydrol., 519, 28692889, doi:10.1016/j.jhydrol.2014.05.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., and T. N. Palmer, 1998: Impact of ensemble size on ensemble prediction. Mon. Wea. Rev., 126, 25032518, doi:10.1175/1520-0493(1998)126%3C2503:IOESOE%3E2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, G. M., J. P. Dallavalle, and H. R. Glahn, 1989: Statistical forecasts based on the National Meteorological Center’s numerical weather prediction system. Wea. Forecasting, 4, 401412, doi:10.1175/1520-0434(1989)004<0401:SFBOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M., S. Gangopadhyay, L. Hay, B. Rajagopalan, and R. Wilby, 2004: The Schaake shuffle: A method for reconstructing space–time variability in forecasted precipitation and temperature fields. J. Hydrometeor., 5, 243262, doi:10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demargne, J., and Coauthors, 2014: The science of NOAA’s operational Hydrologic Ensemble Forecast Service. Bull. Amer. Meteor. Soc., 95, 7998, doi:10.1175/BAMS-D-12-00081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., G. DiMego, M. S. Tracton, and B. Zhou, 2003: NCEP short-range ensemble forecasting (SREF) system: Multi-IC, multi-model and multi-physics approach. Research Activities in Atmospheric and Oceanic Modeling, J. Cote, Ed., CAS/JSC Working Group Numerical Experimentation Rep. 23, WMO/TD 1161, 5.09–5.10.

  • Georgakakos, A. P., H. Yao, M. Mullusky, and K. P. Georgakakos, 1998: Impacts of climate variability on the operational forecast and management of the upper Des Moines River basin. Water Resour. Res., 34, 799821, doi:10.1029/97WR03135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glahn, H. R., and D. A. Lowry, 1972: The use of Model Output Statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 12031211, doi:10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimit, E. P., T. Gneiting, V. J. Berrocal, and N. A. Johnson, 2006: The continuous ranked probability score for circular variables and its application to mesoscale forecast ensemble verification. Wea. Forecasting, 132, 117, doi:10.1256/qj.05.235.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2006: Probability quantitative precipitation forecasts based on reforecast analogs: Theory and application. Mon. Wea. Rev., 134, 32093229, doi:10.1175/MWR3237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, M. Fiorino, and S. G. Benjamin, 2011: Global ensemble predictions of 2009’s tropical cyclones initialized with an ensemble Kalman filter. Wea. Forecasting, 139, 668688, doi:10.1175/2010MWR3456.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. Bates, J. Whitaker, D. Murray, M. Fiorino, T. Galarneau, Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, doi:10.1175/BAMS-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herr, H. D., and R. Krzysztofowicz, 2005: Generic probability distribution of rainfall in space: The bivariate model. J. Hydrol., 306, 234263, doi:10.1016/j.jhydrol.2004.09.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, doi:10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosking, J. R. M., 1990: L-moments: Analysis and estimation of distributions using linear combinations of order statistics. J. Roy. Stat. Soc., 52B, 105124, http://www.jstor.org/stable/2345653.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and H. L. Mitchell, 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124, 12251242, doi:10.1175/1520-0493(1996)124<1225:ASSATE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, K. S., and R. Krzysztofowicz, 1997: A bivariate meta-Gaussian density for use in hydrology. Stochastic Hydrol. Hydraul., 11, 1731, doi:10.1007/BF02428423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitzmiller, D., D. Miller, R. Fulton, and F. Ding, 2013: Radar and multisensor precipitation estimation techniques in National Weather Service hydrologic operations. J. Hydrol. Eng., 18, 133142, doi:10.1061/(ASCE)HE.1943-5584.0000523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krzysztofowicz, R., and W. B. Evans, 2008: Probabilistic forecasts from the National Digital Forecast Database. Wea. Forecasting, 23, 270289, doi:10.1175/2007WAF2007029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1973: A new vector partition of the probability score. J. Appl. Meteor., 12, 595600, doi:10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pagano, T. C., and Coauthors, 2014: Challenges of operational river forecasting. J. Hydrometeor., 15, 16921707, doi:10.1175/JHM-D-13-0188.1.

  • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174, doi:10.1175/MWR2906.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, S. M., and D. R. Maidment, 1999: Coordinate transformations for using NEXRAD data in GIS-based hydrologic modeling. J. Hydrol. Eng., 4, 174182, doi:10.1061/(ASCE)1084-0699(1999)4:2(174).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schefzik, R., T. L. Thorarinsdottir, and T. Gneiting, 2013: Uncertainty quantification in complex simulation models using ensemble copula coupling. Stat. Sci., 28, 616640, doi:10.1214/13-STS443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., and T. M. Hamill, 2015: Statistical postprocessing of ensemble precipitation forecasts by fitting censored, shifted gamma distributions. Mon. Wea. Rev., 143, 45784596, doi:10.1175/MWR-D-15-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, D.-J., A. Seed, and G. Delrieu, 2011: Radar and multisensor rainfall estimation for hydrologic applications. Rainfall: State of the Science, Geophys. Monogr., Vol. 191, Amer. Geophys. Union, 79–104.

    • Crossref
    • Export Citation
  • Smith, J. A., M. L. Baeck, A. Ntelekos, G. Villarini, and M. Steiner, 2011: Extreme rainfall and flooding from orographic thunderstorms in the central Appalachians. Water Resour. Res., 47, W04514, doi:10.1029/2010WR010190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, and Y. Zhu, 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A, 6279, doi:10.1111/j.1600-0870.2007.00273.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., D.-J. Seo, J. Demargne, J. Brown, S. Cong, and J. Schaake, 2011: Generation of ensemble precipitation forecast from single-valued quantitative precipitation forecast for hydrologic ensemble prediction. J. Hydrol., 399, 281298, doi:10.1016/j.jhydrol.2011.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., S. Reed, and D. Kitzmiller, 2011: Effects of retrospective gauge-based readjustment of multisensor precipitation estimates on hydrologic simulations. J. Hydrometeor., 12, 429443, doi:10.1175/2010JHM1200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1966 1322 66
PDF Downloads 328 49 5