Impact of Tropical Deforestation and Forest Degradation on Precipitation over Borneo Island

Atsuhiro Takahashi Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan

Search for other papers by Atsuhiro Takahashi in
Current site
Google Scholar
PubMed
Close
,
Tomo’omi Kumagai Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan

Search for other papers by Tomo’omi Kumagai in
Current site
Google Scholar
PubMed
Close
,
Hironari Kanamori Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan

Search for other papers by Hironari Kanamori in
Current site
Google Scholar
PubMed
Close
,
Hatsuki Fujinami Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan

Search for other papers by Hatsuki Fujinami in
Current site
Google Scholar
PubMed
Close
,
Tetsuya Hiyama Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan

Search for other papers by Tetsuya Hiyama in
Current site
Google Scholar
PubMed
Close
, and
Masayuki Hara Center for Environmental Science in Saitama, Kazo, Saitama, Japan

Search for other papers by Masayuki Hara in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Southeast Asian tropical rain forests in the Maritime Continent are among the most important biomes in terms of global and regional water cycling. How land use and land cover change (LULCC) relating to deforestation and forest degradation alter the local hydroclimate over the island of Borneo is examined using the Weather Research and Forecasting (WRF) Model with an appropriate land surface model for describing the influence of changes in the vegetation status on the atmosphere. The model was validated against precipitation data from Tropical Rainfall Measuring Mission (TRMM) satellite 3B42 measurements. A main novelty in this analysis is that the diurnal cycle of precipitation over the island, which is a dominant climatic characteristic of the Maritime Continent, was successfully reproduced. To clarify the impact of the LULCC on the precipitation regimes over the island, numerical experiments were performed with the model that demonstrated the following. Deforestation that generates high albedo areas, such as bare lands, would induce a reduction in precipitation because of reductions in evapotranspiration, convection, and horizontal atmospheric moisture inflow. On the other hand, a decrease in evapotranspiration efficiency without changing the surface albedo could increase precipitation due to an increase in convection and horizontal atmospheric moisture inflow in compensation for the decrease in evapotranspiration. In detail, on the Maritime Continent, through changes in the land surface heating process and land–sea breeze circulation, the LULCC would impact the amplitude of the diurnal precipitation cycle in each region as defined according to the distance from the coast, resulting in changes in the precipitation regimes over the island.

Current affiliation: Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Masayuki Hara, hara.masayuki@pref.saitama.lg.jp

Abstract

Southeast Asian tropical rain forests in the Maritime Continent are among the most important biomes in terms of global and regional water cycling. How land use and land cover change (LULCC) relating to deforestation and forest degradation alter the local hydroclimate over the island of Borneo is examined using the Weather Research and Forecasting (WRF) Model with an appropriate land surface model for describing the influence of changes in the vegetation status on the atmosphere. The model was validated against precipitation data from Tropical Rainfall Measuring Mission (TRMM) satellite 3B42 measurements. A main novelty in this analysis is that the diurnal cycle of precipitation over the island, which is a dominant climatic characteristic of the Maritime Continent, was successfully reproduced. To clarify the impact of the LULCC on the precipitation regimes over the island, numerical experiments were performed with the model that demonstrated the following. Deforestation that generates high albedo areas, such as bare lands, would induce a reduction in precipitation because of reductions in evapotranspiration, convection, and horizontal atmospheric moisture inflow. On the other hand, a decrease in evapotranspiration efficiency without changing the surface albedo could increase precipitation due to an increase in convection and horizontal atmospheric moisture inflow in compensation for the decrease in evapotranspiration. In detail, on the Maritime Continent, through changes in the land surface heating process and land–sea breeze circulation, the LULCC would impact the amplitude of the diurnal precipitation cycle in each region as defined according to the distance from the coast, resulting in changes in the precipitation regimes over the island.

Current affiliation: Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Masayuki Hara, hara.masayuki@pref.saitama.lg.jp
Save
  • Bhatt, B. C., S. Sobolowski, and A. Higuchi, 2016: Simulation of diurnal rainfall variability over the Maritime Continent with a high-resolution regional climate model. J. Meteor. Soc. Japan, 94A, 89103, doi:10.2151/jmsj.2015-052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biasutti, M., S. E. Yuter, C. D. Burleyson, and A. H. Sobel, 2012: Very high resolution rainfall patterns measured by TRMM precipitation radar: Seasonal and diurnal cycles. Climate Dyn., 39, 239258, doi:10.1007/s00382-011-1146-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2008: Forests and climate change: Forcing, feedbacks, and the climate benefits of forests. Science, 320, 14441449, doi:10.1126/science.1155121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, J. E., P. L. Shearman, G. P. Asner, D. E. Knapp, G. Aoro, and B. Lokes, 2013: Extreme differences in forest degradation in Borneo: Comparing practices in Sarawak, Sabah, and Brunei. PLoS One, 8, e69679, doi:10.1371/journal.pone.0069679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canadell, J. G., and Coauthors, 2007: Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA, 104, 18 86618 870, doi:10.1073/pnas.0702737104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 11121128, doi:10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delire, C., J. A. Foley, and S. Thompson, 2004: Long-term variability in a coupled atmosphere–biosphere model. J. Climate, 17, 39473959, doi:10.1175/1520-0442(2004)017<3947:LVIACA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, R., B. Zhu, and R. E. Dickinson, 1999: How do atmosphere and land surface influence seasonal changes of convection in the tropical Amazon? J. Climate, 12, 13061321, doi:10.1175/1520-0442(1999)012<1306:HDAALS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, M., F. Kimura, and M. Yoshizaki, 2010: Morning precipitation peak over the Strait of Malacca under a calm condition. Mon. Wea. Rev., 138, 14741486, doi:10.1175/2009MWR3068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaveau, D. L. A., and Coauthors, 2013: Reconciling forest conservation and logging in Indonesian Borneo. PLoS One, 8, e69887, doi:10.1371/journal.pone.0069887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaveau, D. L. A., and Coauthors, 2014: Four decades of forest persistence, clearance and logging on Borneo. PLoS One, 9, e101654, doi:10.1371/journal.pone.0101654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giambelluca, T. W., 2002: Hydrology of altered tropical forest. Hydrol. Processes, 16, 16651669, doi:10.1002/hyp.5021.

  • Giambelluca, T. W., J. Fox, S. Yarnasarn, P. Onibutr, and M. A. Nullet, 1999: Dry-season radiation balance of land covers replacing forest in northern Thailand. Agric. For. Meteor., 95, 5365, doi:10.1016/S0168-1923(99)00016-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giambelluca, T. W., and Coauthors, 2016: Evapotranspiration of rubber (Hevea brasiliensis) cultivated at two sites in southeast Asia. Water Resour. Res., 52, 660679, doi:10.1002/2015WR017755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gotangco Castillo, C. K. G., and K. R. Gurney, 2013: A sensitivity analysis of surface biophysical, carbon, and climate impacts of tropical deforestation rates in CCSM4-CNDV. J. Climate, 26, 805821, doi:10.1175/JCLI-D-11-00382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hara, M., T. Yoshikane, H. Takahashi, F. Kimura, A. Noda, and T. Tokioka, 2009: Assessment of the diurnal cycle of precipitation over the maritime continent simulated by a 20 km mesh GCM using TRMM PR data. J. Meteor. Soc. Japan, 87A, 413424, doi:10.2151/jmsj.87A.413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., S. G. Geotis, F. D. Marks Jr., and A. K. West, 1981: Winter monsoon convection in the vicinity of north Borneo. Part I: Structure and time variation of the clouds and precipitation. Mon. Wea. Rev., 109, 15951614, doi:10.1175/1520-0493(1981)109<1595:WMCITV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ichikawa, H., and T. Yasunari, 2006: Time–space characteristics of diurnal rainfall over Borneo and surrounding oceans as observed by TRMM-PR. J. Climate, 19, 12381260, doi:10.1175/JCLI3714.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamori, H., T. Yasunari, and K. Kuraji, 2013: Modulation of the diurnal cycle of rainfall associated with the MJO observed by a dense hourly rain gauge network at Sarawak, Borneo. J. Climate, 26, 48584875, doi:10.1175/JCLI-D-12-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karnauskas, K., J. P. Donnelly, and K. J. Anchukaitis, 2016: Future freshwater stress for island populations. Nat. Climate Change, 6, 720725, doi:10.1038/nclimate2987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 26802696, doi:10.1175/2007JCLI2051.1.

  • Kodama, C., and Coauthors, 2015: A 20-year climatology of a NICAM AMIP-type simulation. J. Meteor. Soc. Japan, 93, 393424, doi:10.2151/jmsj.2015-024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumagai, T., and T. Kume, 2012: Influences of diurnal rainfall cycle on CO2 exchange over Bornean tropical rainforests. Ecol. Modell., 246, 9198, doi:10.1016/j.ecolmodel.2012.07.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumagai, T., and A. Porporato, 2012: Drought-induced mortality of a Bornean tropical rain forest amplified by climate change. J. Geophys. Res., 117, G02032, doi:10.1029/2011JG001835.

    • Search Google Scholar
    • Export Citation
  • Kumagai, T., H. Kanamori, and T. Yasunari, 2013: Deforestation-induced reduction in rainfall. Hydrol. Processes, 27, 38113814, doi:10.1002/hyp.10060.

  • Kumagai, T., H. Kanamori, and N. A. Chappell, 2016: Tropical forest hydrology. Forest Hydrology: Processes, Management and Assessment, D. M. Amatya et al., Eds., CAB International, 88–102.

    • Crossref
    • Export Citation
  • Langner, A., J. Miettinen, and F. Siegert, 2007: Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Global Change Biol., 13, 23292340, doi:10.1111/j.1365-2486.2007.01442.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D., and K. Vandecar, 2014: Effects of tropical deforestation on climate and agriculture. Nat. Climate Change, 5, 2736, doi:10.1038/nclimate2430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawton, R. O., U. S. Nair, R. A. Pielke Sr., and R. M. Welch, 2001: Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science, 294, 584587.

    • Search Google Scholar
    • Export Citation
  • Mabuchi, K., Y. Sato, and H. Kida, 2005: Climatic impact of vegetation change in the Asian tropical region. Part I: Case of the Northern Hemisphere summer. J. Climate, 18, 410428, doi:10.1175/JCLI-3273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmood, R., R. A. Pielke Sr., and C. A. McAlpine, 2016: Climate-relevant land use and land cover change policies. Bull. Amer. Meteor. Soc., 97, 195202, doi:10.1175/BAMS-D-14-00221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malhi, Y., and Coauthors, 2009: Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl. Acad. Sci. USA, 106, 20 61020 615, doi:10.1073/pnas.0804619106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medvigy, D., R. L. Walko, M. Otte, and R. Avissar, 2013: Simulated changes in northwest U.S. climate in response to Amazon deforestation. J. Climate, 26, 91159136, doi:10.1175/JCLI-D-12-00775.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, K., 2005: The community Noah land-surface model (LSM) user’s guide, version 2.7.1. NOAA/NCEP Doc., 26 pp.

  • Miyamoto, Y., T. Yamaura, R. Yoshida, H. Yashiro, H. Tomita, and Y. Kajikawa, 2016: Precursors of deep moist convection in a subkilometer global simulation. J. Geophys. Res. Atmos., 121, 12 08012 088, doi:10.1002/2016JD024965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, doi:10.1175/1520-0442-16.10.1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohsawa, T., T. Hayashi, Y. Mitsuta, and J. Matsumoto, 2001: Diurnal variations of convective activity and rainfall in tropical Asia. J. Meteor. Soc. Japan, 79, 333352, doi:10.2151/jmsj.79.333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oki, T., and K. Mushiake, 1994: Seasonal change of the diurnal cycle of precipitation over Japan and Malaysia. J. Appl. Meteor., 33, 14451463, doi:10.1175/1520-0450(1994)033<1445:SCOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satoh, M., and Coauthors, 2014: The Non-hydrostatic Icosahedral Atmospheric Model: Description and development. Prog. Earth Planet. Sci., 1, 18, doi:10.1186/s40645-014-0018-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siqueira, M., G. Katul, and A. Porporato, 2009: Soil moisture feedbacks on convection triggers: The role of soil–plant hydrodyanmics. J. Hydrometeor., 10, 96112, doi:10.1175/2008JHM1027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Sobel, A. H., C. D. Burleyson, and S. E. Yuter, 2011: Rain on small tropical islands. J. Geophys. Res., 116, D08102, doi:10.1029/2010JD014695.

    • Search Google Scholar
    • Export Citation
  • Spracklen, D. V., S. R. Arnold, and C. M. Taylor, 2012: Observations of increased tropical rainfall preceded by air passage over forests. Nature, 489, 282285, doi:10.1038/nature11390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, A. L. S., M. Longo, R. G. Knox, E. Lee, and P. R. Moorcroft, 2015: Future deforestation in the Amazon and consequences for South American climate. Agric. For. Meteor., 214–215, 1224, doi:10.1016/j.agrformet.2015.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, H. G., T. Yoshikane, M. Hara, K. Takata, and T. Yasunari, 2010: High-resolution modelling of the potential impact of land-surface conditions on regional climate over Indochina associated with the diurnal precipitation cycle. Int. J. Climatol., 30, 20042020, doi:10.1002/joc.2119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teo, C.-K., T.-Y. Koh, J. C.-F. Lo, and C. B. Bhatt, 2011: Principal component analysis of observed and modeled diurnal rainfall in the Maritime Continent. J. Climate, 24, 46624675, doi:10.1175/2011JCLI4047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and J. F. Royer, 2004: Tropical deforestation and climate variability. Climate Dyn., 22, 857874, doi:10.1007/s00382-004-0423-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., S. Sun, and R. Mei, 2011: Vegetation dynamics contributes to the multi-decadal variability of precipitation in the Amazon region. Geophys. Res. Lett., 38, L19703, doi:10.1029/2011GL049017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werth, D., and R. Avissar, 2002: The local and global effects of Amazon deforestation. J. Geophys. Res., 107, 8087, doi:10.1029/2001JD000717.

  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, doi:10.1175/BAMS-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, L., R. Fu, Y. F. Zhang, P. A. Arias, D. N. Fernando, W. Li, K. Fernandes, and A. R. Bowerman, 2014: What controls the interannual variation of the wet season onsets over the Amazon? J. Geophys. Res. Atmos., 119, 23142328, doi:10.1002/2013JD021349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., A. Henderson-Sellers, and K. McGuffie, 2001: The compounding effects of tropical deforestation and greenhouse warming on climate. Climatic Change, 49, 309338, doi:10.1023/A:1010662425950.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4855 1613 175
PDF Downloads 3157 533 75