Utilizing Probabilistic Downscaling Methods to Develop Streamflow Forecasts from Climate Forecasts

Amirhossein Mazrooei Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina

Search for other papers by Amirhossein Mazrooei in
Current site
Google Scholar
PubMed
Close
and
A. Sankarasubramanian Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina

Search for other papers by A. Sankarasubramanian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Statistical information from ensembles of climate forecasts can be utilized in improving the streamflow predictions by using different downscaling methods. This study investigates the use of multinomial logistic regression (MLR) in downscaling large-scale ensemble climate forecasts into basin-scale probabilistic streamflow forecasts of categorical events over major river basins across the U.S. Sun Belt. The performance of MLR is then compared with the categorical forecasts estimated from the traditional approach, principal component regression (PCR). Results from both cross validation and split sampling reveal that in general, the probabilistic categorical forecasts from the MLR model have more accuracy and exhibit higher rank probability skill score (RPSS) compared to the PCR probabilistic forecasts. MLR forecasts are also more skillful than PCR forecasts during the winter season as well as for basins that exhibit high interannual variability in streamflows. The role of ensemble size of precipitation forecasts in developing MLR-based streamflow forecasts was also investigated. Because of its simplicity, MLR offers an alternate, reliable approach to developing categorical streamflow forecasts.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Amirhossein Mazrooei, amazroo@ncsu.edu

Abstract

Statistical information from ensembles of climate forecasts can be utilized in improving the streamflow predictions by using different downscaling methods. This study investigates the use of multinomial logistic regression (MLR) in downscaling large-scale ensemble climate forecasts into basin-scale probabilistic streamflow forecasts of categorical events over major river basins across the U.S. Sun Belt. The performance of MLR is then compared with the categorical forecasts estimated from the traditional approach, principal component regression (PCR). Results from both cross validation and split sampling reveal that in general, the probabilistic categorical forecasts from the MLR model have more accuracy and exhibit higher rank probability skill score (RPSS) compared to the PCR probabilistic forecasts. MLR forecasts are also more skillful than PCR forecasts during the winter season as well as for basins that exhibit high interannual variability in streamflows. The role of ensemble size of precipitation forecasts in developing MLR-based streamflow forecasts was also investigated. Because of its simplicity, MLR offers an alternate, reliable approach to developing categorical streamflow forecasts.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Amirhossein Mazrooei, amazroo@ncsu.edu
Save
  • Ahmadisharaf, E., A. J. Kalyanapu, and E.-S. Chung, 2016: Spatial probabilistic multi-criteria decision making for assessment of flood management alternatives. J. Hydrol., 533, 365378, https://doi.org/10.1016/j.jhydrol.2015.12.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ajami, N. K., Q. Duan, X. Gao, and S. Sorooshian, 2006: Multimodel combination techniques for analysis of hydrological simulations: Application to distributed model intercomparison project results. J. Hydrometeor., 7, 755768, https://doi.org/10.1175/JHM519.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antolik, M. S., 2000: An overview of the National Weather Service’s centralized statistical quantitative precipitation forecasts. J. Hydrol., 239, 306337, https://doi.org/10.1016/S0022-1694(00)00361-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arumugam, S., R. Boyles, A. Mazrooei, and H. Singh, 2015: Experimental reservoir storage forecasts utilizing climate-information based streamflow forecasts. Water Resources Research Institute of the University of North Carolina Rep. 456, 33 pp., https://repository.lib.ncsu.edu/bitstream/handle/1840.4/8661/NC-WRRI-456.pdf.

  • Barnston, A. G., S. J. Mason, L. Goddard, D. G. Dewitt, and S. E. Zebiak, 2003: Multimodel ensembling in seasonal climate forecasting at IRI. Bull. Amer. Meteor. Soc., 84, 17831796, https://doi.org/10.1175/BAMS-84-12-1783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13, https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M. P., and L. E. Hay, 2004: Use of medium-range numerical weather prediction model output to produce forecasts of streamflow. J. Hydrometeor., 5, 1532, https://doi.org/10.1175/1525-7541(2004)005<0015:UOMNWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craven, P., and G. Wahba, 1978: Smoothing noisy data with spline functions. Numer. Math., 31, 377403, https://doi.org/10.1007/BF01404567.

  • Devineni, N., and A. Sankarasubramanian, 2010a: Improved categorical winter precipitation forecasts through multimodel combinations of coupled GCMs. Geophys. Res. Lett., 37, L24704, https://doi.org/10.1029/2010GL044989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devineni, N., and A. Sankarasubramanian, 2010b: Improving the prediction of winter precipitation and temperature over the continental United States: Role of the ENSO state in developing multimodel combinations. Mon. Wea. Rev., 138, 24472468, https://doi.org/10.1175/2009MWR3112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devineni, N., A. Sankarasubramanian, and S. Ghosh, 2008: Multimodel ensembles of streamflow forecasts: Role of predictor state in developing optimal combinations. Water Resour. Res., 44, W09404, https://doi.org/10.1029/2006WR005855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., R. Hagedorn, and T. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting–II. Calibration and combination. Tellus, 57A, 234252, https://doi.org/10.1111/j.1600-0870.2005.00104.x.

    • Search Google Scholar
    • Export Citation
  • Epstein, E. S., 1969: A scoring system for probability forecasts of ranked categories. J. Appl. Meteor., 8, 985987, https://doi.org/10.1175/1520-0450(1969)008<0985:ASSFPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garen, D. C., 1992: Improved techniques in regression-based streamflow volume forecasting. J. Water Resour. Plann. Manage., 118, 654670, https://doi.org/10.1061/(ASCE)0733-9496(1992)118:6(654).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, L., A. Barnston, and S. Mason, 2003: Evaluation of the IRI’s “net assessment” seasonal climate forecasts: 1997–2001. Bull. Amer. Meteor. Soc., 84, 17611781, https://doi.org/10.1175/BAMS-84-12-1761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goutte, C., 1997: Note on free lunches and cross-validation. Neural Comput., 9, 12451249, https://doi.org/10.1162/neco.1997.9.6.1245.

  • Grantz, K., B. Rajagopalan, M. Clark, and E. Zagona, 2005: A technique for incorporating large-scale climate information in basin-scale ensemble streamflow forecasts. Water Resour. Res., 41, W10410, https://doi.org/10.1029/2004WR003467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and S. L. Mullen, 2006: Reforecasts: An important dataset for improving weather predictions. Bull. Amer. Meteor. Soc., 87, 3346, https://doi.org/10.1175/BAMS-87-1-33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., and D. P. Lettenmaier, 1999: Columbia River streamflow forecasting based on ENSO and PDO climate signals. J. Water Resour. Plann. Manage., 125, 333341, https://doi.org/10.1061/(ASCE)0733-9496(1999)125:6(333).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., D. Huppert, and D. P. Lettenmaier, 2002: Economic value of long-lead streamflow forecasts for Columbia River hydropower. J. Water Resour. Plann. Manage., 128, 91101, https://doi.org/10.1061/(ASCE)0733-9496(2002)128:2(91).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K.-l., H. V. Gupta, and S. Sorooshian, 1995: Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res., 31, 25172530, https://doi.org/10.1029/95WR01955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakeman, A., and G. Hornberger, 1993: How much complexity is warranted in a rainfall-runoff model? Water Resour. Res., 29, 26372650, https://doi.org/10.1029/93WR00877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemeš, V., 1986: Operational testing of hydrological simulation models. Hydrol. Sci. J., 31, 1324, https://doi.org/10.1080/02626668609491024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krzysztofowicz, R., 2001: The case for probabilistic forecasting in hydrology. J. Hydrol., 249, 29, https://doi.org/10.1016/S0022-1694(01)00420-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., A. G. Barnston, and M. P. Hoerling, 2001: Seasonal predictions, probabilistic verifications, and ensemble size. J. Climate, 14, 16711676, https://doi.org/10.1175/1520-0442(2001)014<1671:SPPVAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., and L. Goddard, 2005: Retrospective forecasts with ECHAM4.5 AGCM. IRI Tech. Rep. 05-02.

  • Li, S., L. Goddard, and D. G. DeWitt, 2008: Predictive skill of AGCM seasonal climate forecasts subject to different SST prediction methodologies. J. Climate, 21, 21692186, https://doi.org/10.1175/2007JCLI1660.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., and A. Sankarasubramanian, 2012: Reducing hydrologic model uncertainty in monthly streamflow predictions using multimodel combination. Water Resour. Res., 48, W12516, https://doi.org/10.1029/2011WR011380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., A. Sankarasubramanian, R. Ranjithan, and E. Brill, 2014: Improved regional water management utilizing climate forecasts: An interbasin transfer model with a risk management framework. Water Resour. Res., 50, 68106827, https://doi.org/10.1002/2013WR015248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, D., and Coauthors, 2004: Streamflow and water balance intercomparisons of four land surface models in the North American Land Data Assimilation System project. J. Geophys. Res., 109, D07S91, https://doi.org/10.1029/2003JD003517.

    • Search Google Scholar
    • Export Citation
  • Mason, S. J., and M. K. Tippett, 2016: Climate Predictability Tool version 15.3. 9. Columbia University Academic Commons, https://doi.org/10.7916/D8668DCW.

    • Crossref
    • Export Citation
  • Mazrooei, A., T. Sinha, A. Sankarasubramanian, S. Kumar, and C. D. Peters-Lidard, 2015: Decomposition of sources of errors in seasonal streamflow forecasting over the U.S. Sunbelt. J. Geophys. Res. Atmos., 120, 11 80911 825, https://doi.org/10.1002/2015JD023687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moradkhani, H., K.-l. Hsu, H. V. Gupta, and S. Sorooshian, 2004: Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. J. Hydrol., 295, 246262, https://doi.org/10.1016/j.jhydrol.2004.03.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oh, J., and A. Sankarasubramanian, 2012: Interannual hydroclimatic variability and its influence on winter nutrient loadings over the Southeast United States. Hydrol. Earth Syst. Sci., 16, 22852298, https://doi.org/10.5194/hess-16-2285-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pagano, T. C., 2008: Probabilistic seasonal water supply forecasting in an operational environment: The USDA-NRCS perspective. World Environmental and Water Resources Congress 2008: Ahupua’A, Honolulu, HI, American Society of Civil Engineers, 1–10, https://doi.org/10.1061/40976(316)575.

    • Crossref
    • Export Citation
  • Regonda, S. K., B. Rajagopalan, and M. Clark, 2006: A new method to produce categorical streamflow forecasts. Water Resour. Res., 42, W09501, https://doi.org/10.1029/2006WR004984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1992: Simulation of the present-day climate with the ECHAM-3 model: Impact of model physics and resolution. Max Planck Institute for Meteorology Rep. 93, 171 pp.

  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sankarasubramanian, A., and R. M. Vogel, 2003: Hydroclimatology of the continental United States. Geophys. Res. Lett., 30, 1363, https://doi.org/10.1029/2002GL015937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sankarasubramanian, A., U. Lall, and S. Espinueva, 2008: Role of retrospective forecasts of GCMs forced with persisted SST anomalies in operational streamflow forecasts development. J. Hydrometeor., 9, 212227, https://doi.org/10.1175/2007JHM842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, S., T. Sinha, G. Mahinthakumar, A. Sankarasubramanian, and M. Kumar, 2016: Identification of dominant source of errors in developing streamflow and groundwater projection under near-term climate change. J. Geophys. Res. Atmos., 121, 76527672, https://doi.org/10.1002/2016JD025138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, S., and D. Lettenmaier, 2011: Seasonal hydrologic prediction in the United States: Understanding the role of initial hydrologic conditions and seasonal climate forecast skill. Hydrol. Earth Syst. Sci., 15, 35293538, https://doi.org/10.5194/hess-15-3529-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, H., and A. Sankarasubramanian, 2014: Systematic uncertainty reduction strategies for developing streamflow forecasts utilizing multiple climate models and hydrologic models. Water Resour. Res., 50, 12881307, https://doi.org/10.1002/2013WR013855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinha, T., and A. Sankarasubramanian, 2013: Role of climate forecasts and initial conditions in developing streamflow and soil moisture forecasts in a rainfall–runoff regime. Hydrol. Earth Syst. Sci., 17, 721733, https://doi.org/10.5194/hess-17-721-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinha, T., A. Sankarasubramanian, and A. Mazrooei, 2014: Decomposition of sources of errors in monthly to seasonal streamflow forecasts in a rainfall–runoff regime. J. Hydrometeor., 15, 24702483, https://doi.org/10.1175/JHM-D-13-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slack, J., A. Lumb, and J. Landwehr, 1993: Hydro-Climatic Data Network (HCDN) streamflow data set, 1874–1988. Water-Resources Investigations Rep. 93-4076, U.S. Geological Survey, CD-ROM.

  • Tootle, G. A., T. C. Piechota, and A. Singh, 2005: Coupled oceanic-atmospheric variability and U.S. streamflow. Water Resour. Res., 41, W12408, https://doi.org/10.1029/2005WR004381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Dool, H., 1994: Searching for analogues, how long must we wait? Tellus, 46A, 314324, https://doi.org/10.3402/tellusa.v46i3.15481.

  • Vrugt, J. A., H. V. Gupta, B. Nualláin, and W. Bouten, 2006: Real-time data assimilation for operational ensemble streamflow forecasting. J. Hydrometeor., 7, 548565, https://doi.org/10.1175/JHM504.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., M. A. Liniger, and C. Appenzeller, 2007: The discrete brier and ranked probability skill scores. Mon. Wea. Rev., 135, 118124, https://doi.org/10.1175/MWR3280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., M. A. Liniger, and C. Appenzeller, 2008: Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? Quart. J. Roy. Meteor. Soc., 134, 241260, https://doi.org/10.1002/qj.210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 100, Academic Press, 648 pp.

  • Wilks, D. S., and T. M. Hamill, 2007: Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Wea. Rev., 135, 23792390, https://doi.org/10.1175/MWR3402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., and D. P. Lettenmaier, 2006: A test bed for new seasonal hydrologic forecasting approaches in the western United States. Bull. Amer. Meteor. Soc., 87, 16991712, https://doi.org/10.1175/BAMS-87-12-1699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., E. P. Maurer, A. Kumar, and D. P. Lettenmaier, 2002: Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res., 107, 4429, https://doi.org/10.1029/2001JD000659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., E. F. Wood, L. Luo, and M. Pan, 2011: A first look at Climate Forecast System version 2 (CFSv2) for hydrological seasonal prediction. Geophys. Res. Lett., 38, L13402, https://doi.org/10.1029/2011GL047792.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 740 516 67
PDF Downloads 148 22 3