Effectiveness of Different Urban Heat Island Mitigation Methods and Their Regional Impacts

Ning Zhang CMA–NJU Joint Laboratory for Climate Prediction Studies, Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, and Jiangsu Collaborative Innovation Center for Climate Change, Nanjing, China

Search for other papers by Ning Zhang in
Current site
Google Scholar
PubMed
Close
,
Yan Chen Jiangsu Climate Center, Nanjing, China

Search for other papers by Yan Chen in
Current site
Google Scholar
PubMed
Close
,
Ling Luo Zhejiang Province Meteorological Observatory, Hangzhou, China

Search for other papers by Ling Luo in
Current site
Google Scholar
PubMed
Close
, and
Yongwei Wang School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Yongwei Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cool roofs and green roofs are two popular methods to mitigate the urban heat island and improve urban climates. The effectiveness of different urban heat island mitigation strategies in the summer of 2013 in the Yangtze River delta, China, is investigated using the Weather Research and Forecasting (WRF) Model coupled with a physically based single-layer urban canopy model. The modifications to the roof surface changed the urban surface radiation balance and then modified the local surface energy budget. Both cool roofs and green roofs led to a lower surface skin temperature and near-surface air temperature. Increasing the roof albedo to 0.5 caused a similar effectiveness as covering 25% of urban roofs with vegetation; increasing the roof albedo to 0.7 caused a similar near-surface air temperature decrease as 50% green roof coverage. The near-surface relative humidity increased in both cool roof and green roof experiments because of the combination of the impacts of increases in specific humidity and decreases in air temperature. The regional impacts of cool roofs and green roofs were evaluated using a regional effect index. A regional impact was found for near-surface air temperature and specific/relative humidity when the percentage of roofs covered with high-albedo materials or green roofs reached a higher fraction (greater than 50%). The changes in the vertical profiles of temperature cause a more stable atmospheric boundary layer over the urban area; at the same time, the crossover phenomena occurred above the boundary layer due to the decrease in vertical wind speed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ning Zhang, ningzhang@nju.edu.cn

Abstract

Cool roofs and green roofs are two popular methods to mitigate the urban heat island and improve urban climates. The effectiveness of different urban heat island mitigation strategies in the summer of 2013 in the Yangtze River delta, China, is investigated using the Weather Research and Forecasting (WRF) Model coupled with a physically based single-layer urban canopy model. The modifications to the roof surface changed the urban surface radiation balance and then modified the local surface energy budget. Both cool roofs and green roofs led to a lower surface skin temperature and near-surface air temperature. Increasing the roof albedo to 0.5 caused a similar effectiveness as covering 25% of urban roofs with vegetation; increasing the roof albedo to 0.7 caused a similar near-surface air temperature decrease as 50% green roof coverage. The near-surface relative humidity increased in both cool roof and green roof experiments because of the combination of the impacts of increases in specific humidity and decreases in air temperature. The regional impacts of cool roofs and green roofs were evaluated using a regional effect index. A regional impact was found for near-surface air temperature and specific/relative humidity when the percentage of roofs covered with high-albedo materials or green roofs reached a higher fraction (greater than 50%). The changes in the vertical profiles of temperature cause a more stable atmospheric boundary layer over the urban area; at the same time, the crossover phenomena occurred above the boundary layer due to the decrease in vertical wind speed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ning Zhang, ningzhang@nju.edu.cn
Save
  • Aflaki, A., M. Mirnezhad, A. Ghaffarianhoseini, A. Ghaffarianhoseini, H. Omrany, Z.-H. Wang, and H. Akbari, 2016: Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities, 62, 131145, doi:10.1016/j.cities.2016.09.003.

    • Search Google Scholar
    • Export Citation
  • Barlage, M., S. Miao, and F. Chen, 2016: Impact of physics parameterizations on high-resolution weather prediction over two Chinese megacities. J. Geophys. Res. Atmos., 121, 44874498, doi:10.1002/2015JD024450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basara, J. B., H. G. Basara, B. G. Illston, and K. C. Crawford, 2010: The impact of the urban heat island during an intense heat wave in Oklahoma City. Adv. Meteor., 2010, 230365, doi:10.1155/2010/230365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bornstein, R. D., 1968: Observations of the urban heat island effect in New York City. J. Appl. Meteor., 7, 575582, doi:10.1175/1520-0450(1968)007<0575:OOTUHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta–scale model. Mon. Wea. Rev., 117, 18721890, doi:10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., S. Miao, M. Tewari, J.-W. Bao, and H. Kusaka, 2011a: A numerical study of interactions between surface forcing and sea breeze circulations and their effects on stagnation in the greater Houston area. J. Geophys. Res., 116, D12105, doi:10.1029/2010JD015533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2011b: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273288, doi:10.1002/joc.2158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., and S. Rahmstorf, 2012: A decade of weather extremes. Nat. Climate Change, 2, 491–491, doi:10.1038/nclimate1452.

  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Gershunov, A., D. R. Cayan, and S. F. Iacobellis, 2009: The great 2006 heat wave over California and Nevada: Signal of an increasing trend. J. Climate, 22, 61816203, doi:10.1175/2009JCLI2465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gosling, S. N., G. R. McGregor, and A. Páldy, 2007: Climate change and heat-related mortality in six cities. Part 1: Model construction and validation. Int. J. Biometeorol., 51, 525540, doi:10.1007/s00484-007-0092-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gosling, S. N., G. R. McGregor, and J. A. Lowe, 2009: Climate change and heat-related mortality in six cities. Part 2: Climate model evaluation and projected impacts from changes in the mean and variability of temperature with climate change. Int. J. Biometeorol., 53, 3151, doi:10.1007/s00484-008-0189-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grawe, D., H. L. Thompson, J. A. Salmond, X.-M. Cai, and K. H. Schlünzen, 2013: Modelling the impact of urbanisation on regional climate in the Greater London area. Int. J. Climatol., 33, 23882401, doi:10.1002/joc.3589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, S., 2007: Urbanization and global environmental change: Local effects of urban warming. Geogr. J., 173, 8388, doi:10.1111/j.1475-4959.2007.232_3.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guirguis, K., A. Gershunov, A. Tardy, and R. Basu, 2014: The impact of recent heat waves on human health in California. J. Appl. Meteor. Climatol., 53, 319, doi:10.1175/JAMC-D-13-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutiérrez, E., J. E. González, A. Martilli, R. Bornstein, and M. Arend, 2015: Simulations of a heat-wave event in New York City using a multilayer urban parameterization. J. Appl. Meteor. Climatol., 54, 283301, doi:10.1175/JAMC-D-14-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., R. Ruedy, M. Sato, and K. K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

  • Harlan, S. L., A. J. Brazel, L. Prashad, W. L. Stefanov, and L. Larsen, 2006: Neighborhood microclimates and vulnerability to heat stress. Soc. Sci. Med., 63, 28472863, doi:10.1016/j.socscimed.2006.07.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Q., and Y. Lu, 2015: The effect of urban heat island on climate warming in the Yangtze River delta urban agglomeration in China. Int. J. Environ. Res. Public Health, 12, 87738789, doi:10.3390/ijerph120808773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, H.-Q., B. Zhu, T. Zhu, J.-L. Sun, and J.-J. Ou, 2014: Impact of megacity Shanghai on the urban heat-island effects over the downstream city Kunshan. Bound.-Layer Meteor., 152, 411426, doi:10.1007/s10546-014-9927-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, F., W. Yan, G. Zheng, H. Yin, G. Cavan, W. Zhan, N. Zhang, and L. Cheng, 2016: Retrieval of three-dimensional tree canopy and shade using terrestrial laser scanning (TLS) data to analyze the cooling effect of vegetation. Agric. For. Meteor., 217, 2234, doi:10.1016/j.agrformet.2015.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kovats, R. S., and S. Hajat, 2008: Heat stress and public health: A critical review. Annu. Rev. Public Health, 29, 4155, doi:10.1146/annurev.publhealth.29.020907.090843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., and F. Kimura, 2004: Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteor. Soc. Japan, 82, 6780, doi:10.2151/jmsj.82.67.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358, doi:10.1023/A:1019207923078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., M. Hara, and Y. Takane, 2012a: Urban climate projection by the WRF model at 3-km horizontal grid increment: Dynamical downscaling and predicting heat stress in the 2070's August for Tokyo, Osaka, and Nagoya metropolises. J. Meteor. Soc. Japan, 90B, 4763, doi:10.2151/jmsj.2012-B04.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., F. Chen, M. Tewari, J. Dudhia, D. O. Gill, M. G. Duda, W. Wang, and Y. Miya, 2012b: Numerical simulation of urban heat island effect by the WRF model with 4-km grid increment: An inter-comparison study between the urban canopy model and slab model. J. Meteor. Soc. Japan, 90B, 3345, doi:10.2151/jmsj.2012-B03.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lelieveld, J., Y. Proestos, P. Hadjinicolaou, M. Tanarhte, E. Tyrlis, and G. Zittis, 2016: Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Climatic Change, 137, 245260, doi:10.1007/s10584-016-1665-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., and E. Bou-Zeid, 2013: Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. J. Appl. Meteor. Climatol., 52, 20512064, doi:10.1175/JAMC-D-13-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., and E. Bou-Zeid, 2014: Quality and sensitivity of high-resolution numerical simulation of urban heat islands. Environ. Res. Lett., 9, 055001, doi:10.1088/1748-9326/9/5/055001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., E. Bou-Zeid, and M. Oppenheimer, 2014: The effectiveness of cool and green roofs as urban heat island mitigation strategies. Environ. Res. Lett., 9, 055002, doi:10.1088/1748-9326/9/5/055002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and A. J. Broccoli, 2012: Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J. Climate, 25, 72667281, doi:10.1175/JCLI-D-11-00709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteor., 104, 261304, doi:10.1023/A:1016099921195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, doi:10.1126/science.1098704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, S., and F. Chen, 2008: Formation of horizontal convective rolls in urban areas. Atmos. Res., 89, 298304, doi:10.1016/j.atmosres.2008.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, S., P. Li, and X. Wang, 2009: Building morphological characteristics and their effect on the wind in Beijing. Adv. Atmos. Sci., 26, 11151124, doi:10.1007/s00376-009-7223-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., and L. V. Alexander, 2013: On the measurement of heat waves. J. Climate, 26, 45004517, doi:10.1175/JCLI-D-12-00383.1.

  • Perkins, S. E., L. V. Alexander, and J. R. Nairn, 2012: Increasing frequency, intensity and duration of observed global heat waves and warm spells. Geophys. Res. Lett., 39, L20714, doi:10.1029/2012GL053361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roldan, E., M. Gomez, M. R. Pino, J. Pórtoles, C. Linares, and J. Díaz, 2016: The effect of climate-change-related heat waves on mortality in Spain: Uncertainties in health on a local scale. Stochastic Environ. Res. Risk Assess., 30, 831839, doi:10.1007/s00477-015-1068-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, A. H., H. Akbari, S. Bretz, B. L. Fishman, D. M. Kurn, D. Sailor, and H. Taha, 1995: Mitigation of urban heat islands: Materials, utility programs, updates. Energy Build., 22, 255265, doi:10.1016/0378-7788(95)00927-P.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamanca, F., A. Krpo, A. Martilli, and A. Clappier, 2010: A new building energy model coupled with an urban canopy parameterization for urban climate simulations—Part I: Formulation, verification, and sensitivity analysis of the model. Theor. Appl. Climatol., 99, 331344, doi:10.1007/s00704-009-0142-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamanca, F., A. Martilli, M. Tewari, and F. Chen, 2011: A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. J. Appl. Meteor. Climatol., 50, 11071128, doi:10.1175/2010JAMC2538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, A., and C. M. Mertes, 2014: Expansion and growth in Chinese cities, 1978–2010. Environ. Res. Lett., 9, 024008, doi:10.1088/1748-9326/9/2/024008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, A., M. A. Friedl, and D. Potere, 2009: A new map of global urban extent from MODIS satellite data. Environ. Res. Lett., 4, 044003, doi:10.1088/1748-9326/4/4/044003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, A., P. Conry, H. J. S. Fernando, A. F. Hamlet, J. J. Hellmann, and F. Chen, 2016: Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: Evaluation with a regional climate model. Environ. Res. Lett., 11, 064004, doi:10.1088/1748-9326/11/6/064004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., 2005: A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact., 9, 127, doi:10.1175/EI156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva, H., P. E. Phelan, and J. S. Golden, 2010: Modeling effects of urban heat island mitigation strategies on heat-related morbidity: A case study for Phoenix, Arizona, USA. Int. J. Biometeorol., 54, 1322, doi:10.1007/s00484-009-0247-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. T., B. F. Zaitchik, and J. M. Gohlke, 2013: Heat waves in the United States: Definitions, patterns and trends. Climatic Change, 118, 811825, doi:10.1007/s10584-012-0659-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sparks, N., and R. Toumi, 2015: Numerical simulations of daytime temperature and humidity crossover effects in London. Bound.-Layer Meteor., 154, 101117, doi:10.1007/s10546-014-9964-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugawara, H., H. Tanaka, K. Narita, T. Nakano, and T. Mikami, 2008: How much cool air does an urban green park produce? Geogr. Rep. Tokyo Metropolitan Univ., 43, 8389.

    • Search Google Scholar
    • Export Citation
  • Sun, T., E. Bou-Zeid, Z.-H. Wang, E. Zerba, and G.-H. Ni, 2013: Hydrometeorological determinants of green roof performance via a vertically-resolved model for heat and water transport. Build. Environ., 60, 211224, doi:10.1016/j.buildenv.2012.10.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, T., E. Bou-Zeid, and G.-H. Ni, 2014: To irrigate or not to irrigate: Analysis of green roof performance via a vertically-resolved hygrothermal model. Build. Environ., 73, 127137, doi:10.1016/j.buildenv.2013.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., X. Zhang, F. W. Zwiers, L. Song, H. Wan, T. Hu, H. Yin, and G. Ren, 2014: Rapid increase in the risk of extreme summer heat in Eastern China. Nat. Climate Change, 4, 10821085, doi:10.1038/nclimate2410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., X. Zhang, G. Ren, F. W. Zwiers, and T. Hu, 2016: Contribution of urbanization to warming in China. Nat. Climate Change, 6, 706709, doi:10.1038/nclimate2956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susca, T., S. R. Gaffin, and G. R. Dell’Osso, 2011: Positive effects of vegetation: Urban heat island and green roofs. Environ. Pollut., 159, 21192126, doi:10.1016/j.envpol.2011.03.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., and Coauthors, 2010: The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeor., 54, 7584, doi:10.1007/s00484-009-0256-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanarhte, M., P. Hadjinicolaou, and J. Lelieveld, 2015: Heat wave characteristics in the eastern Mediterranean and Middle East using extreme value theory. Climate Res., 63, 99113, doi:10.3354/cr01285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trusilova, K., M. Jung, G. Churkina, U. Karstens, M. Heimann, and M. Claussen, 2008: Urbanization impacts on the climate in Europe: Numerical experiments by the PSU-NCAR Mesoscale Model (MM5). J. Appl. Meteor. Climatol., 47, 14421455, doi:10.1175/2007JAMC1624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., Z. Yan, X.-W. Quan, and J. Feng, 2016: Urban warming in the 2013 summer heat wave in eastern China. Climate Dyn., 48, 30153033, doi:10.1007/s00382-016-3248-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., W. Zhou, and D. Chen, 2014: Summer high temperature extremes in southeast China: Bonding with the El Niño–Southern Oscillation and East Asian summer monsoon coupled system. J. Climate, 27, 41224138, doi:10.1175/JCLI-D-13-00545.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and Y. Gong, 2010: The impact of an urban dry island on the summer heat wave and sultry weather in Beijing City. Chin. Sci. Bull., 55, 16571661, doi:10.1007/s11434-010-3088-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., U. Berardi, and H. Akbari, 2016: Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy Build., 114, 219, doi:10.1016/j.enbuild.2015.06.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z. H., E. Bou-Zeid, and J. A. Smith, 2013: A coupled energy transport and hydrological model for urban canopies evaluated using a wireless sensor network. Quart. J. Roy. Meteor. Soc., 139, 16431657, doi:10.1002/qj.2032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., Y. Zhou, Y. Gao, J. S. Fu, B. A. Johnson, C. Huang, Y.-M. Kim, and Y. Liu, 2014: Estimation and uncertainty analysis of impacts of future heat waves on mortality in the eastern United States. Environ. Health Perspect., 122, 1016, doi:10.1289/ehp.1306670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Z.-H. Wang, F. Chen, S. Miao, M. Tewari, J. A. Voogt, and S. Myint, 2015: Enhancing hydrologic modelling in the coupled Weather Research and Forecasting–urban modelling system. Bound.-Layer Meteor., 155, 87109, doi:10.1007/s10546-014-9991-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, N., Z. Q. Gao, X. M. Wang, and Y. Chen, 2010: Modeling the impact of urbanization on the local and regional climate in Yangtze River delta, China. Theor. Appl. Climatol., 102, 331342, doi:10.1007/s00704-010-0263-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, N., L. F. Zhu, and Y. Zhu, 2011: Urban heat island and boundary layer structures under hot weather synoptic conditions: A case study of Suzhou City, China. Adv. Atmos. Sci., 28, 855865, doi:10.1007/s00376-010-0040-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, N., X. Wang, Y. Chen, W. Dai, and X. Wang, 2016: Numerical simulations on influence of urban land cover expansion and anthropogenic heat release on urban meteorological environment in Pearl River delta. Theor. Appl. Climatol., 126, 469479, doi:10.1007/s00704-015-1601-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., and J. M. Shepherd, 2010: Atlanta’s urban heat island under extreme heat conditions and potential mitigation strategies. Nat. Hazards, 52, 639668, doi:10.1007/s11069-009-9406-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2581 1307 166
PDF Downloads 1623 373 51