Interdecadal Climate Variations Controlling the Water Level of Lake Qinghai over the Tibetan Plateau

Lin Zhao Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China, and Department of Plants, Soils, and Climate, Utah State University, Logan, Utah

Search for other papers by Lin Zhao in
Current site
Google Scholar
PubMed
Close
,
S.-Y. Simon Wang Utah Climate Center, and Department of Plants, Soils, and Climate, Utah State University, Logan, Utah

Search for other papers by S.-Y. Simon Wang in
Current site
Google Scholar
PubMed
Close
, and
Jonathan Meyer Utah Climate Center, and Department of Plants, Soils, and Climate, Utah State University, Logan, Utah

Search for other papers by Jonathan Meyer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using observed and reanalysis data, the pronounced interdecadal variations of Lake Qinghai (LQH) water levels and associated climate factors were diagnosed. From the 1960s to the early 2000s, the water level of LQH in the Tibetan Plateau has experienced a continual decline of 3 m but has since increased considerably. A water budget analysis of the LQH watershed suggested that the water vapor flux divergence is the dominant atmospheric process modulating precipitation and subsequently the lake volume change . The marked interdecadal variability in and was found to be related to the North Pacific (NP) and Pacific decadal oscillation (PDO) modes during the cold season (November–March). Through empirical orthogonal function (EOF) and regression analyses, the water vapor sink over the LQH watershed also responds significantly to the summer Eurasian wave train modulated by the low-frequency variability associated with the cold season NP and PDO modes. Removal of these variability modes (NP, PDO, and the Eurasian wave train) led to a residual uptrend in the hydrological variables of , , and precipitation, corresponding to the net water level increase. Attribution analysis using the Coupled Model Intercomparison Project phase 5 (CMIP5) single-forcing experiments shows that the simulations driven by greenhouse gas forcing produced a significant increase in the LQH precipitation, while anthropogenic aerosols generated a minor wetting trend as well.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-17-0071.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lin Zhao, zhaolin_110@lzb.ac.cn

Abstract

Using observed and reanalysis data, the pronounced interdecadal variations of Lake Qinghai (LQH) water levels and associated climate factors were diagnosed. From the 1960s to the early 2000s, the water level of LQH in the Tibetan Plateau has experienced a continual decline of 3 m but has since increased considerably. A water budget analysis of the LQH watershed suggested that the water vapor flux divergence is the dominant atmospheric process modulating precipitation and subsequently the lake volume change . The marked interdecadal variability in and was found to be related to the North Pacific (NP) and Pacific decadal oscillation (PDO) modes during the cold season (November–March). Through empirical orthogonal function (EOF) and regression analyses, the water vapor sink over the LQH watershed also responds significantly to the summer Eurasian wave train modulated by the low-frequency variability associated with the cold season NP and PDO modes. Removal of these variability modes (NP, PDO, and the Eurasian wave train) led to a residual uptrend in the hydrological variables of , , and precipitation, corresponding to the net water level increase. Attribution analysis using the Coupled Model Intercomparison Project phase 5 (CMIP5) single-forcing experiments shows that the simulations driven by greenhouse gas forcing produced a significant increase in the LQH precipitation, while anthropogenic aerosols generated a minor wetting trend as well.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-17-0071.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lin Zhao, zhaolin_110@lzb.ac.cn

Supplementary Materials

    • Supplemental Materials (DOCX 2.37 MB)
Save
  • Che, T., X. Li, and R. Jin, 2009: Monitoring the frozen duration of Qinghai Lake using satellite passive microwave remote sensing low frequency data. Chin. Sci. Bull., 54, 22942299, doi:10.1007/s11434-009-0044-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and R. Huang, 2012: Excitation mechanisms of the teleconnection patterns affecting the July precipitation in northwest China. J. Climate, 25, 78347851, doi:10.1175/JCLI-D-11-00684.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cochran, W. T., and Coauthors, 1967: What is the fast Fourier transform? Proc. IEEE, 55, 16641674, doi:10.1109/PROC.1967.5957.

  • Crétaux, J.-F., and Coauthors, 2011: SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Adv. Space Res., 47, 14971507, doi:10.1016/j.asr.2011.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daniell, P. J., 1946: Discussion on the symposium on autocorrelation in time series. J. Roy. Stat. Soc., 8 (Suppl.), 8890.

  • Dee, D., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and N. Mantua, 2016: Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Climate Change, 6, 10421047, doi:10.1038/nclimate3082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, doi:10.1175/JCLI3473.1.

  • Ding, Q., and B. Wang, 2007: Intraseasonal teleconnection between the summer Eurasian wave train and the Indian monsoon. J. Climate, 20, 37513767, doi:10.1175/JCLI4221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dwyer, J. G., M. Biasutti, and A. H. Sobel, 2014: The effect of greenhouse gas–induced changes in SST on the annual cycle of zonal mean tropical precipitation. J. Climate, 27, 45444565, doi:10.1175/JCLI-D-13-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157178, doi:10.1256/qj.01.211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fosu, B. O., S.-Y. Simon Wang, and J.-H. Yoon, 2016: The 2014/15 snowpack drought in Washington State and its climate forcing [in “Explaining Extreme Events of 2015 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 97 (12), S19S24, doi:10.1175/BAMS-ExplainingExtremeEvents2015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2015: Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett., 42, 18941902, doi:10.1002/2015GL063083.

  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107, doi:10.1175/2009BAMS2607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, W., A. Duan, Y. Li, and B. He, 2016: The intraseasonal oscillation of eastern Tibetan Plateau precipitation in response to the summer Eurasian wave train. J. Climate, 29, 72157230, doi:10.1175/JCLI-D-15-0620.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Z., C.-F. You, Y. Wang, and Y. Shi, 2010: Hydrological and solute budgets of Lake Qinghai, the largest lake on the Tibetan Plateau. Quat. Int., 218, 151156, doi:10.1016/j.quaint.2009.11.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. Hnilo, M. Fiorino, and G. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, T. W., J. B. Valdés, B. Nijssen, and D. Roncayolo, 2006: Quantification of linkages between large-scale climatic patterns and precipitation in the Colorado River Basin. J. Hydrol., 321, 173186, doi:10.1016/j.jhydrol.2005.07.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, Y., T. Yao, C. Yi, W. Wang, Y. Sheng, J. Li, and D. Joswiak, 2012: Glacier mass loss induced the rapid growth of Linggo Co on the central Tibetan Plateau. J. Glaciol., 58, 177184, doi:10.3189/2012JoG11J025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, Y., K. Yang, B. Wang, Y. Sheng, B. W. Bird, G. Zhang, and L. Tian, 2014: Response of inland lake dynamics over the Tibetan Plateau to climate change. Climatic Change, 125, 281290, doi:10.1007/s10584-014-1175-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., H. Dong, W. Hou, S. Wang, H. Jiang, J. Yang, and G. Wu, 2016: Temporal succession of ancient phytoplankton community in Qinghai Lake and implication for paleo-environmental change. Sci. Rep., 6, 19 769, doi:10.1038/srep19769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., X. D. Zhu, Z. Y. Wang, and Q. C. Wang, 2005: Impacting factors and changing tendency of water level in Qinghai Lake in recent 42 years. J. Desert Res., 25, 689696, doi:10.2166/nh.2015.237.

    • Search Google Scholar
    • Export Citation
  • Li, X. Y., H. Y. Xu, Y. L. Sun, D. S. Zhang, and Z. P. Yang, 2007: Lake-level change and water balance analysis at Lake Qinghai, west China during recent decades. Water Resour. Manage., 21, 15051516, doi:10.1007/s11269-006-9096-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., J. Liao, H. Guo, Z. Liu, and G. Shen, 2014: Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972–2010. PLoS One, 9, e111890, doi:10.1371/journal.pone.0111890.

    • Search Google Scholar
    • Export Citation
  • Lin, Z., and R. Lu, 2005: Interannual meridional displacement of the East Asian upper-tropospheric jet stream in summer. Adv. Atmos. Sci., 22, 199, doi:10.1007/BF02918509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., S. Kang, T. Gong, and A. Lu, 2010: Growth of a high-elevation large inland lake, associated with climate change and permafrost degradation in Tibet. Hydrol. Earth Syst. Sci., 14, 481489, doi:10.5194/hess-14-481-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., B. Wang, M. A. Cane, S.-Y. Yim, and J.-Y. Lee, 2013: Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature, 493, 656659, doi:10.1038/nature11784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, doi:10.1175/JCLI-D-15-0508.1.

  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Qin, B., and Q. Huang, 1998: Evaluation of the climatic change impacts on the inland lake–A case study of Lake Qinghai, China. Climatic Change, 39, 695714, doi:10.1023/A:1005319616456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qing, B., and Y. Shi, 1992: The hydrological characteristics and the cause of the declining of water level in Qinghai Lake. Acta Geogr. Sin., 47, 267273, doi:10.11821/xb199203008.

    • Search Google Scholar
    • Export Citation
  • Rangwala, I., J. R. Miller, and M. Xu, 2009: Warming in the Tibetan Plateau: Possible influences of the changes in surface water vapor. Geophys. Res. Lett., 36, L06703, doi:10.1029/2009GL037245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sha, Y., Z. Shi, X. Liu, and Z. An, 2015: Distinct impacts of the Mongolian and Tibetan Plateaus on the evolution of the East Asian monsoon. J. Geophys. Res. Atmos., 120, 47644782, doi:10.1002/2014JD022880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shanahan, T. M., J. T. Overpeck, W. E. Sharp, C. A. Scholz, and J. A. Arko, 2007: Simulating the response of a closed-basin lake to recent climate changes in tropical West Africa (Lake Bosumtwi, Ghana). Hydrol. Processes, 21, 16781691, doi:10.1002/hyp.6359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X., L. Li, Q. Wang, P. Liu, H. Zhang, and Z. Liu, 2005: Climatic change and its influence on water level of Qinghai Lake. Meteor. Sci. Tech., 33, 5862.

    • Search Google Scholar
    • Export Citation
  • Song, C., B. Huang, and L. Ke, 2013: Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sens. Environ., 135, 2535, doi:10.1016/j.rse.2013.03.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, C., B. Huang, K. Richards, L. Ke, and V. Hien Phan, 2014: Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes? Water Resour. Res., 50, 31703186, doi:10.1002/2013WR014724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9, 303319, doi:10.1007/BF00204745.

  • Uppala, S. M., and Coauthors, 2005: The ERA‐40 Re‐analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Wang, S.-Y., R. R. Gillies, J. Jin, and L. E. Hipps, 2010: Coherence between the Great Salt Lake level and the Pacific quasi-decadal oscillation. J. Climate, 23, 21612177, doi:10.1175/2009JCLI2979.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233235, doi:10.1126/science.1140746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., and X. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys., 56, 11021111, doi:10.6038/cjg20130406.

    • Search Google Scholar
    • Export Citation
  • Xin, X., L. Zhang, J. Zhang, T. Wu, and Y. Fang, 2013: Climate change projections over East Asia with BCC_CSM1.1 climate model under RCP scenarios. J. Meteor. Soc. Japan, 91, 413429, doi:10.2151/jmsj.2013-401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, H., X. Li, and Y. Sun, 2007: Climatic change in the Lake Qinghai watershed in recent 47 years. Arid Meteor., 2, 5054.

  • Yang, K., H. Wu, J. Qin, C. Lin, W. Tang, and Y. Chen, 2014: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global Planet. Change, 112, 7991, doi:10.1016/j.gloplacha.2013.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Climate Change, 2, 663667, doi:10.1038/nclimate1580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., H. Xie, S. Kang, D. Yi, and S. F. Ackley, 2011: Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens. Environ., 115, 17331742, doi:10.1016/j.rse.2011.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., H. Xie, T. Yao, and S. Kang, 2013: Water balance estimates of ten greatest lakes in China using ICESat and Landsat data. Chin. Sci. Bull., 58, 38153829, doi:10.1007/s11434-013-5818-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., T. Yao, H. Xie, K. Zhang, and F. Zhu, 2014: Lakes’ state and abundance across the Tibetan Plateau. Chin. Sci. Bull., 59, 30103021, doi:10.1007/s11434-014-0258-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2073 1391 88
PDF Downloads 390 71 10