• Adler, R. F., and A. J. Negri, 1988: A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteor., 27, 3051, doi:10.1175/1520-0450(1988)027<0030:ASITTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., C. Kidd, G. Petty, M. Morissey, and H. M. Goodman, 2001: Intercomparison of global precipitation products: The third Precipitation Intercomparison Project (PIP–3). Bull. Amer. Meteor. Soc., 82, 13771396, doi:10.1175/1520-0477(2001)082<1377:IOGPPT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and B. Meisner, 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84. Mon. Wea. Rev., 115, 5174, doi:10.1175/1520-0493(1987)115<0051:TRBLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, N., and Coauthors, 2015: The influence of surface and precipitation characteristics on TRMM TMI rainfall retrieval uncertainty. J. Hydrometeor., 16, 15961614, doi:10.1175/JHM-D-14-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2013: Evaluation and uncertainty estimation of NOAA/NSSL next-generation National Mosaic Quantitative Precipitation Estimation product (Q2) over the continental United States. J. Hydrometeor., 14, 13081322, doi:10.1175/JHM-D-12-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T. D., R. L. Alberty, and D. W. Burgess, 1993: Recording, archiving, and using WSR-88D data. Bull. Amer. Meteor. Soc., 74, 645653, doi:10.1175/1520-0477(1993)074<0645:RAAUWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., J. E. Janowiak, and C. Kidd, 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764, doi:10.1175/BAMS-88-1-47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., 1997: SSM/I derived global rainfall estimates for climatological applications. J. Geophys. Res., 102, 16 71516 735, doi:10.1029/97JD01210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Coauthors, 2005: NOAA operational hydrological products derived from the advanced microwave sounding unit. IEEE Trans. Geosci. Remote Sens., 43, 10361049, doi:10.1109/TGRS.2004.843249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebregiorgis, A. S., and F. Hossain, 2011: How much can a priori hydrologic model predictability help in optimal merging of satellite precipitation products? J. Hydrometeor., 12, 12871298, doi:10.1175/JHM-D-10-05023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebregiorgis, A. S., and F. Hossain, 2013: Performance evaluation of merged satellite rainfall products based on spatial and seasonal signatures of hydrologic predictability. Atmos. Res., 132–133, 223238, doi:10.1016/j.atmosres.2013.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebregiorgis, A. S., and F. Hossain, 2014: Estimation of satellite precipitation error variance using readily available geophysical features. IEEE Trans. Geosci. Remote Sens., 52, 288304, doi:10.1109/TGRS.2013.2238636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebregiorgis, A. S., and F. Hossain, 2015: How well can we estimate error variance of satellite precipitation data across the world? Atmos. Res., 154, 3959, doi:10.1016/j.atmosres.2014.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., J. Meng, M. Rodell, and P. Houser, 2005: Analysis of multiple precipitation products and preliminary assessment of their impact on Global Land Data Assimilation System land surface states. J. Hydrometeor., 6, 573598, doi:10.1175/JHM437.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollinger, J. P., J. L. Pierce, and G. A. Poe, 1990: SSM/I instrument evaluation. IEEE Trans. Geosci. Remote Sens., 28, 781790, doi:10.1109/36.58964.

  • Hong, Y., R. F. Adler, F. Hossain, S. Curtis, and G. J. Huffman, 2007a: A first approach to global runoff simulation using satellite rainfall estimation. Water Resour. Res., 43, W08502, doi:10.1029/2006WR005739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., R. F. Adler, and G. J. Huffman, 2007b: Satellite remote sensing for global landslide monitoring. Eos, Trans. Amer. Geophys. Union, 88, 357358, doi:10.1029/2007EO370001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., G. Skofronick-Jackson, C. D. Kummerow, and J. M. Shepherd, 2008: Global precipitation measurement. Precipitation: Advances in Measurement, Estimation, and Precipitation. S. C. Michaelides, Ed., Springer, 131–169.

    • Crossref
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks. J. Appl. Meteor., 36, 11761190, doi:10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., 1997: Estimates of root-mean-square random error contained in finite sets of estimated precipitation. J. Appl. Meteor., 36, 11911201, doi:10.1175/1520-0450(1997)036<1191:EORMSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and D. T. Bolvin, 2015: Real-time TRMM Multi-Satellite Precipitation Analysis data set documentation. NASA TRMM Doc., 47 pp. [Available online at http://pmm.nasa.gov/sites/default/files/document_files/3B4XRT_doc_V7.pdf.]

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2010: The TRMM Multi-satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, F. Hossain and M. Gebremichael, Eds., Springer, 3–22, doi:10.1007/978-90-481-2915-7_1.

    • Crossref
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, and E. J. Nelkin, 2015: Integrated Multi-satellitE Retrievals for GPM (IMERG) Technical Documentation. NASA/GSFC Code 612 Tech. Doc., 48 pp. [Available online at http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf.]

  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM Precipitation Radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C. K., D. R. Kniveton, M. C. Todd, and T. J. Bellerby, 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeor., 4, 10881104, doi:10.1175/1525-7541(2003)004<1088:SREUCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirstetter, P. E., and Coauthors, 2012: Toward a framework for systematic error modeling of spaceborne precipitation radar with NOAA/NSSL ground radar-based National Mosaic QPE. J. Hydrometeor., 13, 12851300, doi:10.1175/JHM-D-11-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirstetter, P. E., H. Andrieu, B. Boudevillain, and G. Delrieu, 2013: A physically based identification of vertical profiles of reflectivity from volume scan radar data. J. Appl. Meteor. Climatol., 52, 16451663, doi:10.1175/JAMC-D-12-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirstetter, P. E., J. J. Gourley, Y. Hong, J. Zhang, S. Moazamigoodarzi, C. Langston, and A. Arthur, 2015: Probabilistic precipitation rate estimates with ground-based radar networks. Water Resour. Res., 51, 14221442, doi:10.1002/2014WR015672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, T., S. Shige, K. Aonashi, and K. Okamoto, 2009: Development of nonuniform beamfilling correction method in rainfall retrievals for passive microwave radiometers over ocean using TRMM observations. J. Meteor. Soc. Japan, 87A, 153164, doi:10.2151/jmsj.87A.153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., J. Zhang, J. J. Gourley, and K. W. Howard, 2002: Weather radar coverage over the contiguous United States. Wea. Forecasting, 17, 927934, doi:10.1175/1520-0434(2002)017<0927:WRCOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., and R. R. Ferraro, 2003: Next generation of NOAA/NESDIS TMI, SSM/I, and AMSR-E microwave land rainfall algorithms. J. Geophys. Res., 108, 8382, doi:10.1029/2001JD001512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sapiano, M. R. P., and P. A. Arkin, 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10, 149166, doi:10.1175/2008JHM1052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shibata, A., K. Imaoka, and T. Koike, 2003: AMSR/AMSR-E level 2 and 3 algorithm developments and data validation plans of NASDA. IEEE Trans. Geosci. Remote Sens., 41, 195203, doi:10.1109/TGRS.2002.808320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., S. Kida, H. Ashiwake, T. Kubota, and K. Aonashi, 2013: Improvement of TMI rain retrievals in mountainous areas. J. Appl. Meteor. Climatol., 52, 242254, doi:10.1175/JAMC-D-12-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E. A., and Coauthors, 1998: Results of the WetNet PIP-2 project. J. Atmos. Sci., 55, 14831536, doi:10.1175/1520-0469(1998)055<1483:ROWPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, N., and F. Weng, 2008: Evaluation of Special Sensor Microwave Imager/Sounder (SSMIS) environmental data records. IEEE Trans. Geosci. Remote Sens., 46, 10061016, doi:10.1109/TGRS.2008.917368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, L., Y. Tian, and X. Lin, 2014: Validation of precipitation retrievals over land from satellite-based passive microwave sensors. J. Geophys. Res. Atmos., 119, 45464567, doi:10.1002/2013JD020933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., and C. D. Peters-Lidard, 2007: Systematic anomalies over inland water bodies in satellite-based precipitation estimates. Geophys. Res. Lett., 34, L14403, doi:10.1029/2007GL030787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., and C. D. Peters-Lidard, 2010: A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett., 37, L24407, doi:10.1029/2010GL046008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., C. D. Peters-Lidard, B. J. Choudhury, and M. Garcia, 2007: Multitemporal analysis of TRMM based satellite precipitation products for land data assimilation applications. J. Hydrometeor., 8, 11651183, doi:10.1175/2007JHM859.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Coauthors, 2009: Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res., 114, D24101, doi:10.1029/2009JD011949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., C. D. Peters-Lidard, R. F. Adler, T. Kubota, and T. Ushio, 2010: Evaluation of GSMaP precipitation estimates over the contiguous United States. J. Hydrometeor., 11, 566574, doi:10.1175/2009JHM1190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turk, F. J., and S. D. Miller, 2005: Toward improved characterization of remotely sensed precipitation regimes with MODIS/AMSR-E blended data techniques. IEEE Trans. Geosci. Remote Sens., 43, 10591069, doi:10.1109/TGRS.2004.841627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turk, F. J., G. D. Rohaly, J. Hawkins, E. A. Smith, F. S. Marzano, A. Mugnai, and V. Levizzani, 1999: Meteorological applications of precipitation estimation from combined SSM/I, TRMM and infrared geostationary satellite data. Microwave Radiometry and Remote Sensing of the Earth's Surface and Atmosphere, P. Pampaloni and S. Paloscia, Eds., VSP International Science Publishers, 353–363.

  • Vila, D., R. Ferraro, and R. Joyce, 2007: Evaluation and improvement of AMSU precipitation retrievals. J. Geophys. Res., 112, D20119, doi:10.1029/2007JD008617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, F., L. Zhao, R. Ferraro, G. Poe, X. Li, and N. Grody, 2003: Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci., 38, 8068, doi:10.1029/2002RS002679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., Y. Qi, K. Howard, C. Langston, and B. Kaney, 2011: Radar quality index (RQI)—A combined measure of beam blockage and VPR effects in a national network. IAHS Publ., 351, 388393.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, doi:10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 222 141 4
PDF Downloads 108 64 0

Understanding Overland Multisensor Satellite Precipitation Error in TMPA-RT Products

View More View Less
  • 1 School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma
  • | 2 Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
  • | 3 NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • | 4 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 5 NASA Marshall Space Flight Center, Huntsville, Alabama
Restricted access

Abstract

The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) has provided the global community a widely used multisatellite (and multisensor type) estimate of quasi-global precipitation. One of the TMPA level-3 products, 3B42RT/TMPA-RT (where RT indicates real time), is a merged product of microwave (MW) and infrared (IR) precipitation estimates, which attempts to exploit the most desirable aspects of both types of sensors, namely, quality rainfall estimation and spatiotemporal resolution. This study extensively and systematically evaluates multisatellite precipitation errors by tracking the sensor-specific error sources and quantifying the biases originating from multiple sensors. High-resolution, ground-based radar precipitation estimates from the Multi-Radar Multi-Sensor (MRMS) system, developed by the National Severe Storms Laboratory (NSSL), are utilized as reference data. The analysis procedure involves segregating the grid precipitation estimate as a function of sensor source, decomposing the bias, and then quantifying the error contribution per grid. The results of this study reveal that while all three aspects of detection (i.e., hit, missed-rain, and false-rain biases) contribute to the total bias associated with IR precipitation estimates, overestimation bias (positive hit bias) and missed precipitation are the dominant error sources for MW precipitation estimates. Considering only MW sensors, the TRMM Microwave Imager (TMI) shows the largest missed-rain and overestimation biases (nearly double that of the other MW estimates) per grid box during the summer and winter seasons. The Special Sensor Microwave Imagers/Sounders (SSMIS on board F17 and F16) also show major error during winter and spring, respectively.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Abebe Sine Gebregiorgis, abesine@ou.edu; abesine2002@gmail.com

This article is included in the Seventh International Precipitation Working Group (IPWG) Workshop special collection.

Abstract

The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) has provided the global community a widely used multisatellite (and multisensor type) estimate of quasi-global precipitation. One of the TMPA level-3 products, 3B42RT/TMPA-RT (where RT indicates real time), is a merged product of microwave (MW) and infrared (IR) precipitation estimates, which attempts to exploit the most desirable aspects of both types of sensors, namely, quality rainfall estimation and spatiotemporal resolution. This study extensively and systematically evaluates multisatellite precipitation errors by tracking the sensor-specific error sources and quantifying the biases originating from multiple sensors. High-resolution, ground-based radar precipitation estimates from the Multi-Radar Multi-Sensor (MRMS) system, developed by the National Severe Storms Laboratory (NSSL), are utilized as reference data. The analysis procedure involves segregating the grid precipitation estimate as a function of sensor source, decomposing the bias, and then quantifying the error contribution per grid. The results of this study reveal that while all three aspects of detection (i.e., hit, missed-rain, and false-rain biases) contribute to the total bias associated with IR precipitation estimates, overestimation bias (positive hit bias) and missed precipitation are the dominant error sources for MW precipitation estimates. Considering only MW sensors, the TRMM Microwave Imager (TMI) shows the largest missed-rain and overestimation biases (nearly double that of the other MW estimates) per grid box during the summer and winter seasons. The Special Sensor Microwave Imagers/Sounders (SSMIS on board F17 and F16) also show major error during winter and spring, respectively.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Abebe Sine Gebregiorgis, abesine@ou.edu; abesine2002@gmail.com

This article is included in the Seventh International Precipitation Working Group (IPWG) Workshop special collection.

Save