• Abatzoglou, J. T., 2011: Influence of the PNA on declining mountain snowpack in the western United States. Int. J. Climatol., 31, 11351142, doi:10.1002/joc.2137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adam, J. C., and D. P. Lettenmaier, 2008: Application of new precipitation and reconstructed streamflow products to streamflow trend attribution in northern Eurasia. J. Climate, 21, 18071828, doi:10.1175/2007JCLI1535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adam, J. C., A. F. Hamlet, and D. P. Lettenmaier, 2009: Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol. Processes, 23, 962972, doi:10.1002/hyp.7201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashfaq, M., L. C. Bowling, K. Cherkauer, J. S. Pal, and N. S. Diffenbaugh, 2010: Influence of climate model biases and daily-scale temperature and precipitation events on hydrological impacts assessment: A case study of the United States. J. Geophys. Res., 115, D14116, doi:10.1029/2009JD012965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bae, D. H., I. W. Jung, and D. P. Lettenmaier, 2011: Hydrologic uncertainties in climate change from IPCC AR4 GCM simulations of the Chungju basin, Korea. J. Hydrol., 401, 90105, doi:10.1016/j.jhydrol.2011.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, doi:10.1038/nature04141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beamish, R. J., M. Henderson, and H. Regier, 1997: Impacts of climate change on the fishes of British Columbia. Responding to Global Climate Change in British Columbia and Yukon, Vol. 1, E. Taylor and B. Taylor, Eds., BC Ministry of Environment, Lands and Parks, 12-1–12-16.

  • Benke, A. C., and C. E. Cushing, Eds., 2005: Rivers of North America. Elsevier, 1168 pp.

  • Bocking, R. C., 1997: Mighty River: A Portrait of the Fraser. Douglas and McIntyre, 294 pp.

  • Bowling, L. C., and D. P. Lettenmaier, 2010: Modeling the effects of lakes and wetlands on the water balance of Arctic environments. J. Hydrometeor., 11, 276295, doi:10.1175/2009JHM1084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowling, L. C., J. W. Pomeroy, and D. P. Lettenmaier, 2004: Parameterization of blowing-snow sublimation in a macroscale hydrology model. J. Hydrometeor., 5, 745762, doi:10.1175/1525-7541(2004)005<0745:POBSIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, C., D. Chaumont, I. Chartier, and A. G. Roy, 2010: Impact of climate change on the hydrology of St. Lawrence tributaries. J. Hydrol., 384, 6583, doi:10.1016/j.jhydrol.2010.01.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bürger, G., T. Q. Murdock, A. T. Werner, S. R. Sobie, and A. J. Cannon, 2012: Downscaling extremes—An intercomparison of multiple statistical methods for present climate. J. Climate, 25, 43664388, doi:10.1175/JCLI-D-11-00408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bürger, G., S. R. Sobie, A. J. Cannon, A. T. Werner, and T. Q. Murdock, 2013: Downscaling extremes: An intercomparison of multiple methods for future climate. J. Climate, 26, 34293449, doi:10.1175/JCLI-D-12-00249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, A. J., 2015: Selecting GCM scenarios that span the range of changes in a multimodel ensemble: Application to CMIP5 climate extremes indices. J. Climate, 28, 12601267, doi:10.1175/JCLI-D-14-00636.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, H. J., and I. W. Jung, 2010: Spatial and temporal changes in runoff caused by climate change in a complex large river basin in Oregon. J. Hydrol., 388, 186207, doi:10.1016/j.jhydrol.2010.04.040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., F. P. Brissette, A. Poulin, and R. Leconte, 2011: Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed. Water Resour. Res., 47, W12509, doi:10.1029/2011WR010602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., F. P. Brissette, D. Chaumont, and M. Braun, 2013: Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins. J. Hydrol., 479, 200214, doi:10.1016/j.jhydrol.2012.11.062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherkauer, K. A., and T. Sinha, 2010: Hydrologic impacts of projected future climate change in the Lake Michigan region. J. Great Lakes Res., 36, 3350, doi:10.1016/j.jglr.2009.11.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherkauer, K. A., L. C. Bowling, and D. P. Lettenmaier, 2003: Variable Infiltration Capacity cold land process model updates. Global Planet. Change, 38, 151159, doi:10.1016/S0921-8181(03)00025-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, G., D. A. Robinson, and S. Kang, 2010: Changing Northern Hemisphere snow seasons. J. Climate, 23, 53055310, doi:10.1175/2010JCLI3644.1.

  • Christensen, N. S., and D. P. Lettenmaier, 2007: A multimodal ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River basin. Hydrol. Earth Syst. Sci., 11, 14171434, doi:10.5194/hess-11-1417-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., 2006: Guidelines for assessing the suitability of spatial climate data sets. Int. J. Climatol., 26, 707721, doi:10.1002/joc.1322.

  • Danard, M., and T. S. Murty, 1994: On recent climate trends in selected salmon-hatching areas of British Columbia. J. Climate, 7, 18031808, doi:10.1175/1520-0442(1994)007<1803:ORCTIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Déry, S. J., and R. D. Brown, 2007: Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback. Geophys. Res. Lett., 34, L22504, doi:10.1029/2007GL031474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Déry, S. J., J. Sheffield, and E. F. Wood, 2005: Connectivity between Eurasian snow cover extent and Canadian snow water equivalent and river discharge. J. Geophys. Res., 110, D23106, doi:10.1029/2005JD006173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Déry, S. J., M. A. Hernández-Henríquez, P. N. Owens, M. W. Parkes, and E. L. Petticrew, 2012: A century of hydrological variability and trends in the Fraser River basin. Environ. Res. Lett., 7, 024019, doi:10.1088/1748-9326/7/2/024019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Déry, S. J., H. K. Knudsvig, M. A. Hernández-Henríquez, and D. S. Coxson, 2014: Net snowpack accumulation and ablation characteristics in the inland temperate rainforest of the upper Fraser basin, Canada. Hydrology, 1, 119, doi:10.3390/hydrology1010001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, Q., and T. J. Phillips, 2010: Bayesian estimation of local signal and noise in multimodel simulations of climate change. J. Geophys. Res., 115, D18123, doi:10.1029/2009JD013654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dwarakish, G. S., and B. P. Ganasri, 2015: Impact of land use change on hydrological systems: A review of current modeling approaches. Cogent. Geosci., 1, 1115691, doi:10.1080/23312041.2015.1115691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliason, E. J., and Coauthors, 2011: Differences in thermal tolerance among sockeye salmon populations. Science, 332, 109112, doi:10.1126/science.1199158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, M. M., and Coauthors, 2010: Implications of 21st century climate change for the hydrology of Washington State. Climatic Change, 102, 225260, doi:10.1007/s10584-010-9855-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eum, H. I., Y. Dibike, T. Prowse, and B. Bonsal, 2014: Inter-comparison of high-resolution gridded climate data sets and their implication on hydrological model simulation over the Athabasca watershed, Canada. Hydrol. Processes, 28, 42504271, doi:10.1002/hyp.10236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, M. R., J. R. Miller, and G. L. Russell, 2007: Modeling changes in summer temperature of the Fraser River during the next century. J. Hydrol., 342, 336346, doi:10.1016/j.jhydrol.2007.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., S. Blenkinsop, and C. Tebaldi, 2007: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 15471578, doi:10.1002/joc.1556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraser Basin Council, 2006: Bridge between nations: A history of First Nations in the Fraser River basin. Fraser Basin Council, 24 pp. [Available online at www.fraserbasin.bc.ca/_Library/Ab_NonAb_Relations/bridge_between_nations.pdf.]

  • Fraser Basin Council, 2009: Sustainability snapshot 4: The many faces of sustainability. 2009 State of the Fraser Basin Rep., Fraser Basin Council, 94 pp. [Available online at www.fraserbasin.bc.ca/_Library/Comm_Indicators/report_ss4_2009.pdf.]

  • Gao, H., and Coauthors, 2009: Water budget record from Variable Infiltration Capacity (VIC) model. Algorithm Theoretical Basis Doc., 56 pp. [Available online at http://www.hydro.washington.edu/SurfaceWaterGroup/Publications/Water_Cycle_MEaSUREs_ATBD_VICmodel_submit.doc.]

  • Gao, H., Q. Tang, C. R. Ferguson, E. F. Wood, and D. P. Lettenmaier, 2010: Estimating the water budget of major US river basins via remote sensing. Int. J. Remote Sens., 31, 39553978, doi:10.1080/01431161.2010.483488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and R. Francisco, 2000: Evaluating uncertainties in the prediction of regional climate change. Geophys. Res. Lett., 27, 12951298, doi:10.1029/1999GL011016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haddeland, I., T. Skaugen, and D. P. Lettenmaier, 2007: Hydrologic effects of land and water management in North America and Asia: 1700–1992. Hydrol. Earth Syst. Sci., 11, 10351045, doi:10.5194/hess-11-1035-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., and D. P. Lettenmaier, 2005: Production of temporally consistent gridded precipitation and temperature fields for the continental United States. J. Hydrometeor., 6, 330336, doi:10.1175/JHM420.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernández-Henríquez, M. A., S. J. Déry, and C. Derksen, 2015: Polar amplification and elevation-dependence in trends of Northern Hemisphere snow cover extent, 1971–2014. Environ. Res. Lett., 10, 044010, doi:10.1088/1748-9326/10/4/044010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hidalgo, H., and Coauthors, 2009: Detection and attribution of streamflow timing changes to climate change in the western United States. J. Climate, 22, 38383855, doi:10.1175/2009JCLI2470.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkinson, R. F., D. W. McKenney, E. J. Milewska, M. F. Hutchinson, P. Papadopol, and L. A. Vincent, 2011: Impact of aligning climatological day on gridding daily maximum–minimum temperature and precipitation over Canada. J. Appl. Meteor. Climatol., 50, 16541665, doi:10.1175/2011JAMC2684.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsieh, W. W., and B. Tang, 2001: Interannual variability of accumulated snow in the Columbia basin, British Columbia. Water Resour. Res., 37, 17531759, doi:10.1029/2000WR900410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutchinson, M. F., D. W. McKenney, K. Lawrence, J. H. Pedlar, R. F. Hopkinson, E. Milewska, and P. Papadopol, 2009: Development and testing of Canada-wide interpolated spatial models of daily minimum–maximum temperature and precipitation for 1961–2003. J. Appl. Meteor. Climatol., 48, 725741, doi:10.1175/2008JAMC1979.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2014: Climate Change 2014: Synthesis Report. Cambridge University Press, 151 pp.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, D. H., X. Shi, H. Gao, and S. J. Déry, 2014: On the changing contribution of snow to the hydrology of the Fraser River basin, Canada. J. Hydrometeor., 15, 13441365, doi:10.1175/JHM-D-13-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, D. H., H. Gao, X. Shi, S. Islam, and S. J. Déry, 2016: Impacts of a rapidly declining mountain snowpack on streamflow timing in Canada’s Fraser River basin. Sci. Rep., 6, 19 299, doi:10.1038/srep19299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, A. L., H. N. Davies, V. A. Bell, and R. G. Jones, 2009: Comparison of uncertainty sources for climate change impacts: Flood frequency in England. Climatic Change, 92, 4163, doi:10.1007/s10584-008-9471-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerkhoven, E., and T. Gan, 2011: Differences and sensitivities in potential hydrologic impact of climate change to regional-scale Athabasca and Fraser River basins of the leeward and windward sides of the Canadian Rocky Mountains respectively. Climatic Change, 106, 583607, doi:10.1007/s10584-010-9958-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., and J. Sedláček, 2012: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, doi:10.1038/nclimate1716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land-surface water and energy fluxes for general-circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., E. F. Wood, and D. P. Lettenmaier, 1996: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global Planet. Change, 13, 195206, doi:10.1016/0921-8181(95)00046-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, D., R. Nolte-Holube, and E. Raschke, 1996: A large scale horizontal routing model to be coupled to land surface parameterization schemes. Tellus, 48A, 708721, doi:10.1034/j.1600-0870.1996.t01-3-00009.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, D., E. Raschke, B. Nijssen, and D. P. Lettenmaier, 1998a: Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol. Sci. J., 43, 131141, doi:10.1080/02626669809492107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, D., B. Nijssen, and D. P. Lettenmaier, 1998b: Regional scale hydrology: II. Application of the VIC-2L model to the Weser River, Germany. Hydrol. Sci. J., 43, 143158, doi:10.1080/02626669809492108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcus, S. L., O. de Viron, and J. O. Dickey, 2011: Abrupt atmospheric torque changes and their role in the 1976–1977 climate regime shift. J. Geophys. Res., 116, D03107, doi:10.1029/2010JD015032.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., and H. G. Hidalgo, 2008: Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling methods. Hydrol. Earth Syst. Sci., 12, 551563, doi:10.5194/hess-12-551-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., A. W. Wood, J. C. Adam, D. P. Lettenmaier, and B. Nijssen, 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, doi:10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKenney, D. W., and Coauthors, 2011: Customized spatial climate models for North America. Bull. Amer. Meteor. Soc., 92, 16111622, doi:10.1175/2011BAMS3132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, C. Y., Q. Y. Duan, Q. H. Sun, and J. D. Li, 2013: Evaluation and application of Bayesian multi-model estimation in temperature simulations. Prog. Phys. Geogr., 37, 727744, doi:10.1177/0309133313494961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Moore, R. D., 1991: Hydrology and water supply in the Fraser River basin. Water in Sustainable Development: Exploring Our Common Future in the Fraser River Basin, A. H. J. Dorcey and J. R. Griggs, Eds, Wastewater Research Centre, University of British Columbia, 21–40.

  • Moore, R. D., and S. M. Wondzell, 2005: Physical hydrology and the effects of forest harvesting in the Pacific Northwest: A review. J. Amer. Water Resour. Assoc., 41, 763784, doi:10.1111/j.1752-1688.2005.tb04463.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, J., M. C. Quick, and M. G. G. Foreman, 2002: Climate change in the Fraser River watershed: Flow and temperature projections. J. Hydrol., 263, 230244, doi:10.1016/S0022-1694(02)00065-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., A. F. Hamlet, M. P. Clark, and D. P. Lettenmaier, 2005: Declining mountain snowpack in western North America. Bull. Amer. Meteor. Soc., 86, 3949, doi:10.1175/BAMS-86-1-39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and R. Swart, 2000: Emissions Scenarios. Cambridge University Press, 570 pp.

  • Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nijssen, B., G. M. O’Donnell, D. P. Lettenmaier, D. Lohmann, and E. F. Wood, 2001a: Predicting the discharge of global rivers. J. Climate, 14, 33073323, doi:10.1175/1520-0442(2001)014<3307:PTDOGR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nijssen, B., R. Schnur, and D. P. Lettenmaier, 2001b: Global retrospective estimation of soil moisture using the Variable Infiltration Capacity land surface model, 1980–93. J. Climate, 14, 17901808, doi:10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NRCan, 2014: Regional, national and international climate modeling. Accessed 9 November 2016. [Available online at http://cfs.nrcan.gc.ca/projects/3?lang=en_CA.]

  • Oubeidillah, A. A., S. C. Kao, M. Ashfaq, B. S. Naz, and G. Tootle, 2014: A large-scale, high-resolution hydrological model parameter data set for climate change impact assessment for the conterminous US. Hydrol. Earth Syst. Sci., 18, 6784, doi:10.5194/hess-18-67-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H., H. Yabuki, and T. Ohata, 2012: Analysis of satellite and model datasets for variability and trends in Arctic snow extent and depth, 1948–2006. Polar Sci., 6, 2337, doi:10.1016/j.polar.2011.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rand, P. S., and Coauthors, 2006: Effects of river discharge, temperature, and future climates on energetics and mortality of adult migrating Fraser River sockeye salmon. Trans. Amer. Fish. Soc., 135, 655667, doi:10.1577/T05-023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangwala, I., and J. R. Miller, 2012: Climate change in mountains: A review of elevation-dependent warming and its possible causes. Climatic Change, 114, 527547, doi:10.1007/s10584-012-0419-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauscher, S. A., J. S. Pal, N. S. Diffenbaugh, and M. M. Benedetti, 2008: Future changes in snowmelt-driven runoff timing over the western US. Geophys. Res. Lett., 35, L16703, doi:10.1029/2008GL034424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodenhuis, D. R., K. E. Bennett, A. T. Werner, T. Q. Murdock, and D. Bronaugh, 2009: Hydro-climatology and future climate impacts in British Columbia. Pacific Climate Impacts Consortium, 132 pp.

  • Schnorbus, M. A., K. E. Bennett, A. T. Werner, and A. J. Berland, 2011: Hydrologic impacts of climate change in the Peace, Campbell and Columbia sub-basins, British Columbia, Canada. Hydrologic Modelling Project Final Rep. Part II, Pacific Climate Impacts Consortium, 175 pp. [Available online at https://pacificclimate.org/sites/default/files/publications/Schnorbus.HydroModelling.FinalReport2.Apr2011.pdf.]

  • Schnorbus, M. A., A. T. Werner, and K. E. Bennett, 2014: Impacts of climate change in three hydrologic regimes in British Columbia, Canada. Hydrol. Processes, 28, 11701189, doi:10.1002/hyp.9661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X., A. W. Wood, and D. P. Lettenmaier, 2008: How essential is hydrologic model calibration to seasonal streamflow forecasting? J. Hydrometeor., 9, 13501363, doi:10.1175/2008JHM1001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X., S. J. Déry, P. Ya. Groisman, and D. P. Lettenmaier, 2013: Relationship between recent pan-Arctic snow cover and hydroclimate trends. J. Climate, 26, 20482064, doi:10.1175/JCLI-D-12-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrestha, R. R., M. A. Schnorbus, A. T. Werner, and A. J. Berland, 2012: Modeling spatial and temporal variability of hydrologic impacts of climate change in the Fraser River basin, British Columbia, Canada. Hydrol. Processes, 26, 18401860, doi:10.1002/hyp.9283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrestha, R. R., M. A. Schnorbus, and D. L. Peters, 2016: Assessment of a hydrologic model’s reliability in simulating flow regime alterations in a changing climate. Hydrol. Processes, 30, 26282643, doi:10.1002/hyp.10812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, S., N. Voisin, and D. P. Lettenmaier, 2012: Value of medium range weather forecasts in the improvement of seasonal hydrologic prediction skill. Hydrol. Earth Syst. Sci., 16, 28252838, doi:10.5194/hess-16-2825-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, S., J. Sheffield, E. F. Wood, and D. P. Lettenmaier, 2013: On the sources of global land surface hydrologic predictability. Hydrol. Earth Syst. Sci., 10, 19872013, doi:10.5194/hessd-10-1987-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sospedra-Alfonso, R., L. Mudryk, W. Merryfield, and C. Derksen, 2016: Representation of snow in the Canadian Seasonal to Interannual Prediction System: Part I. Initialization. J. Hydrometeor., 17, 14671488, doi:10.1175/JHM-D-14-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sproles, E. A., A. W. Nolin, K. Rittger, and T. H. Painter, 2013: Climate change impacts on maritime mountain snowpack in the Oregon Cascades. Hydrol. Earth Syst. Sci., 17, 25812597, doi:10.5194/hess-17-2581-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, I. T., 2009: Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol. Processes, 23, 7894, doi:10.1002/hyp.7128.

  • Stewart, I. T., D. R. Cayan, and M. D. Dettinger, 2005: Changes toward earlier streamflow timing across western North America. J. Climate, 18, 11361155, doi:10.1175/JCLI3321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, 2013: Technical summary. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 33–115, doi:10.1017/CBO9781107415324.005.

    • Crossref
    • Export Citation
  • Su, F., J. C. Adam, L. C. Bowling, and D. P. Lettenmaier, 2005: Streamflow simulations of the terrestrial Arctic domain. J. Geophys. Res., 110, D08112, doi:10.1029/2004JD005518.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., R. L. Smith, D. Nychka, and L. O. Mearns, 2005: Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensembles. J. Climate, 18, 15241540, doi:10.1175/JCLI3363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troin, M., A. Poulin, B. Baraer, and F. Brissette, 2016: Comparing snow models under current and future climates: Uncertainties and implications for hydrological impact studies. J. Hydrol., 540, 588602, doi:10.1016/j.jhydrol.2016.06.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vano, J. A., N. Voisin, L. Cuo, A. F. Hamlet, M. M. Elsner, R. N. Palmer, A. Polebitski, and D. P. Lettenmaier, 2010: Climate change impacts on water management in the Puget Sound region, Washington, USA. Climatic Change, 102, 261286, doi:10.1007/s10584-010-9846-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, doi:10.1007/s10584-011-0148-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wade, N. L., J. Martin, and P. H. Whitfield, 2001: Hydrologic and climatic zonation of Georgia Basin, British Columbia. Can. Water Resour. J., 26, 4370, doi:10.4296/cwrj2601043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, A., Y. L. Kaiyuan, and D. P. Lettenmaier, 2008: Integration of the Variable Infiltration Capacity model soil hydrology scheme into the Community Land Model. J. Geophys. Res., 113, D09111, doi:10.1029/2007JD009246.

    • Search Google Scholar
    • Export Citation
  • Water Survey of Canada, 2014: HYDAT database. Accessed 9 November 2016. [Available online at http://www.ec.gc.ca/rhc-wsc/.]

  • Werner, A. T., M. A. Schnorbus, R. R. Shrestha, and H. D. Eckstrand, 2013: Spatial and temporal change in the hydro-climatology of the Canadian portion of the Columbia River basin under multiple emissions scenarios. Atmos.–Ocean, 51, 357379, doi:10.1080/07055900.2013.821400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitfield, P. H., R. D. Moore, S. W. Fleming, and A. Zawadzki, 2010: Pacific decadal oscillation and the hydroclimatology of western Canada—Review and prospects. Can. Water Resour. J., 35, 128, doi:10.4296/cwrj3501001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., and I. Harris, 2006: A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK. Water Resour. Res., 42, W02419, doi:10.1029/2005WR004065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climate Change, 62, 189216, doi:10.1023/B:CLIM.0000013685.99609.9e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, H., J. S. Kimball, N. Mantua, and J. Stanford, 2011: Automated upscaling of river networks for macroscale hydrological modeling. Water Resour. Res., 47, W03517, doi:10.1029/2009WR008871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, L., and W. W. Hsieh, 1989: Predicting the return migration routes of the Fraser River sockeye salmon (Oncorhynchus nerka). Can. J. Fish. Aquat. Sci., 46, 12871292, doi:10.1139/f89-165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yapo, P., H. Gupta, and S. Sorooshian, 1998: Multi-objective global optimization for hydrologic models. J. Hydrol., 204, 8397, doi:10.1016/S0022-1694(97)00107-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., B. Nijssen, H. Gao, and D. P. Lettenmaier, 2016: The contribution of reservoirs to global land surface water storage variations. J. Hydrometeor., 17, 309325, doi:10.1175/JHM-D-15-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 967 586 2
PDF Downloads 758 432 0

Future Climate Change Impacts on Snow and Water Resources of the Fraser River Basin, British Columbia

View More View Less
  • 1 Environmental Science and Engineering Program, University of Northern British Columbia, Prince George, British Columbia, Canada
  • | 2 Pacific Climate Impacts Consortium, University of Victoria, Victoria, British Columbia, Canada
Restricted access

Abstract

Changes in air temperature and precipitation can modify snowmelt-driven runoff in snowmelt-dominated regimes. This study focuses on climate change impacts on the snow hydrology of the Fraser River basin (FRB) of British Columbia (BC), Canada, using the Variable Infiltration Capacity model (VIC). Statistically downscaled forcing datasets based on 12 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are used to drive VIC for two 30-yr time periods, a historical baseline (1980–2009) and future projections (2040–69: 2050s), under representative concentration pathways (RCPs) 4.5 and 8.5. The ensemble-based VIC simulations reveal widespread and regionally coherent spatial changes in snowfall, snow water equivalent (SWE), and snow cover over the FRB by the 2050s. While the mean precipitation is projected to increase slightly, the fraction of precipitation falling as snow is projected to decrease by nearly 50% in the 2050s compared to the baseline. Snow accumulation and snow-covered area are projected to decline substantially across the FRB, particularly in the Rocky Mountains. Onset of springtime snowmelt in the 2050s is projected to be nearly 25 days earlier than historically, yielding more runoff in the winter and spring for the Fraser River at Hope, BC, and earlier recession to low-flow volumes in summer. The ratio of snowmelt contribution to runoff decreases by nearly 20% in the Stuart and Nautley subbasins of the FRB in the 2050s. The decrease in SWE and loss of snow cover is greater from low to midelevations than in high elevations, where temperatures remain sufficiently cold for precipitation to fall as snow.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Stephen J. Déry, sdery@unbc.ca

Abstract

Changes in air temperature and precipitation can modify snowmelt-driven runoff in snowmelt-dominated regimes. This study focuses on climate change impacts on the snow hydrology of the Fraser River basin (FRB) of British Columbia (BC), Canada, using the Variable Infiltration Capacity model (VIC). Statistically downscaled forcing datasets based on 12 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are used to drive VIC for two 30-yr time periods, a historical baseline (1980–2009) and future projections (2040–69: 2050s), under representative concentration pathways (RCPs) 4.5 and 8.5. The ensemble-based VIC simulations reveal widespread and regionally coherent spatial changes in snowfall, snow water equivalent (SWE), and snow cover over the FRB by the 2050s. While the mean precipitation is projected to increase slightly, the fraction of precipitation falling as snow is projected to decrease by nearly 50% in the 2050s compared to the baseline. Snow accumulation and snow-covered area are projected to decline substantially across the FRB, particularly in the Rocky Mountains. Onset of springtime snowmelt in the 2050s is projected to be nearly 25 days earlier than historically, yielding more runoff in the winter and spring for the Fraser River at Hope, BC, and earlier recession to low-flow volumes in summer. The ratio of snowmelt contribution to runoff decreases by nearly 20% in the Stuart and Nautley subbasins of the FRB in the 2050s. The decrease in SWE and loss of snow cover is greater from low to midelevations than in high elevations, where temperatures remain sufficiently cold for precipitation to fall as snow.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Stephen J. Déry, sdery@unbc.ca
Save