Characterizing Drought in India Using GRACE Observations of Terrestrial Water Storage Deficit

Debanjan Sinha Department of Applied Geology, Indian Institute of Technology (ISM), Dhanbad, India

Search for other papers by Debanjan Sinha in
Current site
Google Scholar
PubMed
Close
,
Tajdarul H. Syed Department of Applied Geology, Indian Institute of Technology (ISM), Dhanbad, India

Search for other papers by Tajdarul H. Syed in
Current site
Google Scholar
PubMed
Close
,
James S. Famiglietti NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, and Department of Earth System Science, and Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by James S. Famiglietti in
Current site
Google Scholar
PubMed
Close
,
John T. Reager NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by John T. Reager in
Current site
Google Scholar
PubMed
Close
, and
Reis C. Thomas Department of Earth System Science, University of California, Irvine, Irvine, California

Search for other papers by Reis C. Thomas in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Frequent recurrences of drought in India have had major societal, economical, and environmental impacts. While region-specific assessments are abundant, exhaustive appraisal over large spatial scales has been insubstantial. Here a new drought index called Water Storage Deficit Index (WSDI) is devised and analyzed for holistic representation of drought. The crux of the method is the employment of terrestrial water storage (TWS) variations from Gravity Recovery and Climate Experiment (GRACE) for quantification of drought intensity and severity. Drought events in recent times are well identified and quantified using the approach over four homogenous rainfall regions of India over the period from April 2002 to April 2015. Among the four regions, the highest peak deficit of −158.00 mm is observed in January 2015 over central India. While the drought of 2002–04 is prominent in peninsular and west-central India, the drought of 2009–10 and 2012–13 is conspicuous in almost all four regions of India. The longest deficit period of 23 months (from February 2009 to December 2010) and the highest severity value of −26.31 are observed in central and northwestern India, respectively. WSDI values show an increasing trend in west-central India (0.07 yr−1), indicating recovery from previously existing drought conditions. On the contrary, a decreasing trend in WSDI is observed in northwestern (−0.07 yr−1) and central (−0.18 yr−1) India. Results demonstrate considerable confidence in the potential of WSDI for robust characterization of drought over large spatial scales.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0047.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Tajdarul H. Syed, tsyed.ismu@gmail.com

Abstract

Frequent recurrences of drought in India have had major societal, economical, and environmental impacts. While region-specific assessments are abundant, exhaustive appraisal over large spatial scales has been insubstantial. Here a new drought index called Water Storage Deficit Index (WSDI) is devised and analyzed for holistic representation of drought. The crux of the method is the employment of terrestrial water storage (TWS) variations from Gravity Recovery and Climate Experiment (GRACE) for quantification of drought intensity and severity. Drought events in recent times are well identified and quantified using the approach over four homogenous rainfall regions of India over the period from April 2002 to April 2015. Among the four regions, the highest peak deficit of −158.00 mm is observed in January 2015 over central India. While the drought of 2002–04 is prominent in peninsular and west-central India, the drought of 2009–10 and 2012–13 is conspicuous in almost all four regions of India. The longest deficit period of 23 months (from February 2009 to December 2010) and the highest severity value of −26.31 are observed in central and northwestern India, respectively. WSDI values show an increasing trend in west-central India (0.07 yr−1), indicating recovery from previously existing drought conditions. On the contrary, a decreasing trend in WSDI is observed in northwestern (−0.07 yr−1) and central (−0.18 yr−1) India. Results demonstrate considerable confidence in the potential of WSDI for robust characterization of drought over large spatial scales.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0047.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Tajdarul H. Syed, tsyed.ismu@gmail.com

Supplementary Materials

    • Supplemental Materials (RAR 329.89 KB)
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agboma, C. O., S. Z. Yirdaw, and K. R. Snelgrove, 2009: Intercomparison of the total storage deficit index (TSDI) over two Canadian Prairie catchments. J. Hydrol., 374, 351359, doi:10.1016/j.jhydrol.2009.06.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beguería, S., S. M. Vicente-Serrano, and M. Angulo-Martínez, 2010: A multiscalar global drought dataset: The SPEI base: A new gridded product for the analysis of drought variability and impacts. Bull. Amer. Meteor. Soc., 91, 13511356, doi:10.1175/2010BAMS2988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhalme, H. N., and D. A. Mooley, 1980: Large-scale droughts/floods and monsoon circulation. Mon. Wea. Rev., 108, 11971211, doi:10.1175/1520-0493(1980)108<1197:LSDAMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhuiyan, C., R. P. Singh, and F. N. Kogan, 2006: Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. Int. J. Appl. Earth Obs. Geoinf., 8, 289302, doi:10.1016/j.jag.2006.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castle, S. L., B. F. Thomas, J. T. Reager, M. Rodell, S. C. Swenson, and J. S. Famiglietti, 2014: Groundwater depletion during drought threatens future water security of the Colorado River basin. Geophys. Res. Lett., 41, 59045911, doi:10.1002/2014GL061055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. L., M. Rodell, C. R. Wilson, and J. S. Famiglietti, 2005a: Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates. Geophys. Res. Lett., 32, L14405, doi:10.1029/2005GL022964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. L., C. R. Wilson, B. D. Tapley, J. S. Famiglietti, and M. Rodell, 2005b: Seasonal global mean sea level change from satellite altimeter, GRACE, and geophysical models. J. Geod., 79, 532539, doi:10.1007/s00190-005-0005-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. L., C. R. Wilson, B. D. Tapley, Z. L. Yang, and G. Y. Niu, 2009: 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models. J. Geophys. Res., 114, B05404, doi:10.1029/2008JB006056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdhury, A. M., M. Dandekar, and P. S. Raut, 1989: Variability in drought incidence over India—A statistical approach. Mausam, 40, 207214.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., R. L. Miller, and R. Seager, 2009: Amplification of the North American “Dust Bowl” drought through human-induced land degradation. Proc. Natl. Acad. Sci. USA, 106, 49975001, doi:10.1073/pnas.0810200106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E. R., R. Seager, M. A. Cane, and D. W. Stahle, 2007: North American drought: Reconstructions, causes, and consequences. Earth Sci. Rev., 81, 93134, doi:10.1016/j.earscirev.2006.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011: Characteristics and trends in various forms of the Palmer drought severity index during 1900–2008. J. Geophys. Res., 116, D12115, doi:10.1029/2010JD015541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, doi:10.1038/nclimate1633.

  • Dai, A., P. J. Lamb, K. E. Trenberth, M. Hulme, P. D. Jones, and P. Xie, 2004: The recent Sahel drought is real. Int. J. Climatol., 24, 13231331, doi:10.1002/joc.1083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damberg, L., and A. AghaKouchak, 2014: Global trends and patterns of drought from space. Theor. Appl. Climatol., 117, 441448, doi:10.1007/s00704-013-1019-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and I. Rodriguez-Iturbe, 1994: Analytical framework for the characterization of space–time variability of soil moisture. Adv. Water Resour., 17, 3545, doi:10.1016/0309-1708(94)90022-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., 2014: The global groundwater crisis. Nat. Climate Change, 4, 945948, doi:10.1038/nclimate2425.

  • Famiglietti, J. S., and M. Rodell, 2013: Water in the balance. Science, 340, 13001301, doi:10.1126/science.1236460.

  • Famiglietti, J. S., and Coauthors, 2011: Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett., 38, L03403, doi:10.1029/2010GL046442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, P. A., and S. Gadgil, 2010: Towards understanding the unusual Indian monsoon in 2009. J. Earth Syst. Sci., 119, 397415, doi:10.1007/s12040-010-0033-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frappart, F., F. Papa., J. S. da Silva, G. Ramillien, C. Prigent, F. Seyler, and S. Calmant, 2012: Surface freshwater storage and dynamics in the Amazon basin during the 2005 exceptional drought. Environ. Res. Lett., 7, 044010, doi:10.1088/1748-9326/7/4/044010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadgil, S., P. N. Vinayachandran, and P. A. Francis, 2003: Droughts of the Indian summer monsoon: Role of clouds over the Indian Ocean. Curr. Sci., 85 (12), 17131719.

    • Search Google Scholar
    • Export Citation
  • Ganguli, P., and M. J. Reddy, 2014: Evaluation of trends and multivariate frequency analysis of droughts in three meteorological subdivisions of western India. Int. J. Climatol., 34, 911928, doi:10.1002/joc.3742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golian, S., O. Mazdiyasni, and A. AghaKouchak, 2015: Trends in meteorological and agricultural droughts in Iran. Theor. Appl. Climatol., 119, 679688, doi:10.1007/s00704-014-1139-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gore, P. G., T. Prasad, and H. R. Hatwar, 2010: Mapping of drought areas over India. NCC Research Rep. 12, National Climate Centre, Indian Meteorological Department, 25 pp. [Available online at http://www.imdpune.gov.in/Clim_Pred_LRF_New/Reports/NCCResearchReports/research_report_12.pdf.]

  • Gregory, S., 1989: The changing frequency of drought in India, 1871–1985. Geogr. J., 155, 322334, doi:10.2307/635207.

  • Guhathakurta, P., 2003: Drought in districts of India during the recent all India normal monsoon years and its probability of occurrence. Mausam, 54, 542545.

    • Search Google Scholar
    • Export Citation
  • Hamed, K. H., and A. R. Rao, 1998: A modified Mann–Kendall trend test for autocorrelated data. J. Hydrol., 204, 182196, doi:10.1016/S0022-1694(97)00125-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hao, Z., and A. AghaKouchak, 2014: A nonparametric multivariate multi-index drought monitoring framework. J. Hydrometeor., 15, 89101, doi:10.1175/JHM-D-12-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heim, R. R., 2000: Drought indices: A review. Drought: A Global Assessment, Routledge, 159–167.

  • Heim, R. R., 2002: A review of twentieth century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83, 11491165, doi:10.1175/1520-0477(2002)083<1149:AROTDI>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Eischeid, A. Kumar, R. Leung, A. Mariotti, K. Mo, S. Schubert, and R. Seager, 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, doi:10.1175/BAMS-D-13-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houborg, R., M. Rodell, B. Li, R. Reichle, and B. F. Zaitchik, 2012: Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations. Water Resour. Res., 48, W07525, doi:10.1029/2011WR011291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoyos, C. D., and P. J. Webster, 2007: The role of intraseasonal variability in the nature of Asian monsoon precipitation. J. Climate, 20, 44024424, doi:10.1175/JCLI4252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, S., J. Chang, Q. Huang, and Y. Chen, 2014: Spatio-temporal changes and frequency analysis of drought in the Wei River Basin, China. Water Resour. Manage., 28, 30953110, doi:10.1007/s11269-014-0657-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jain, S. K., R. Keshri, A. Goswami, and A. Sarkar, 2010: Application of meteorological and vegetation indices for evaluation of drought impact: A case study for Rajasthan, India. Nat. Hazards, 54, 643656, doi:10.1007/s11069-009-9493-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1955: Rank Correlation Methods. Griffin, 196 pp.

  • Keyantash, J. A., and J. A. Dracup, 2002: The quantification of drought: An evaluation of drought indices. Bull. Amer. Meteor. Soc., 83, 11671180, doi:10.1175/1520-0477(2002)083<1191:TQODAE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keyantash, J. A., and J. A. Dracup, 2004: An aggregate drought index: Assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage. Water Resour. Res., 40, W09304, doi:10.1029/2003WR002610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwak, J., Y. Kim, J. Lee, and H. Kim, 2012: Analysis of drought characteristics using copula theory. World Environmental and Water Resources Congress 2012, ASCE, 1762–1771, doi:10.1061/9780784412312.175.

    • Crossref
    • Export Citation
  • Landerer, F. W., and S. C. Swenson, 2012: Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res., 48, W04531, doi:10.1029/2011WR011453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leblanc, M. J., P. Tregoning, G. Ramillien, S. O. Tweed, and A. Fakes, 2009: Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia. Water Resour. Res., 45, W04408, doi:10.1029/2008WR007333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, D., B. R. Scanlon, L. Longuevergne, A. Y. Sun, D. N. Fernando, and H. Save, 2013: GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophys. Res. Lett., 40, 33953401, doi:10.1002/grl.50655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, C., H. Kunstmann, B. Devaraju, M. Tourian, N. Sneeuw, and J. Riegger, 2014: Large-scale runoff from landmasses: A global assessment of the closure of the hydrological and atmospheric water balances. J. Hydrometeor., 15, 21112139, doi:10.1175/JHM-D-13-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, doi:10.2307/1907187.

  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Proc. Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 17–22.

  • Mishra, A. K., and V. R. Desai, 2005a: Spatial and temporal drought analysis in the Kansabati River basin, India. Int. J. River Basin Manage., 3, 3141, doi:10.1080/15715124.2005.9635243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, A. K., and V. R. Desai, 2005b: Drought forecasting using stochastic model. Stochastic Environ. Res. Risk Assess., 19, 326339, doi:10.1007/s00477-005-0238-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, A. K., and V. P. Singh, 2009: Analysis of drought severity–area–frequency curves using a general circulation model and scenario uncertainty. J. Geophys. Res., 114, D06120, doi:10.1029/2008JD010986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, A. K., and V. P. Singh, 2010: A review of drought concepts. J. Hydrol., 391, 202216, doi:10.1016/j.jhydrol.2010.07.012.

  • Mishra, A. K., V. R. Desai, and V. P. Singh, 2007: Drought forecasting using a hybrid stochastic and neural network model. J. Hydrol. Eng., 12, 626638, doi:10.1061/(ASCE)1084-0699(2007)12:6(626).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, A. K., V. P. Singh, and V. R. Desai, 2009: Drought characterization: A probabilistic approach. Stochastic Environ. Res. Risk Assess., 23, 4155, doi:10.1007/s00477-007-0194-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2008: Model-based drought indices over the United States. J. Hydrometeor., 9, 12121230, doi:10.1175/2008JHM1002.1.

  • Mo, K. C., 2011: Drought onset and recovery over the United States. J. Geophys. Res., 116, 114, doi:10.1029/2011JD016168.

  • Mu, Q., M. Zhao, J. S. Kimball, N. G. McDowell, and S. W. Running, 2013: A remotely sensed global terrestrial drought severity index. Bull. Amer. Meteor. Soc., 94, 8398, doi:10.1175/BAMS-D-11-00213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naresh Kumar, M. N., C. S. Murthy, M. V. R. Sesha Sai, and P. S. Roy, 2009: On the use of standardized precipitation index (SPI) for drought intensity assessment. Meteor. Appl., 16, 381389, doi:10.1002/met.136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neena, J. M., E. Suhas, and B. N. Goswami, 2011: Leading role of internal dynamics in the 2009 Indian summer monsoon drought. J. Geophys. Res., 116, D13103, doi:10.1029/2010JD015328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NRAA, 2013: Contingency and compensatory agriculture plans for droughts and floods in India—2012. Position Paper 6, National Rainfed Area Authority, 87 pp. [Available online at http://nraa.gov.in/pdf/Droughts%20and%20Floods%20in%20India-2012.pdf.]

  • Palmer, W., 1965: Meteorological drought. U.S. Weather Bureau Research Paper 45, 58 pp. [Available online at http://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf.]

  • Pandey, R. P., and K. S. Ramasastri, 2001: Relationship between the common climatic parameters and average drought frequency. Hydrol. Processes, 15, 10191032, doi:10.1002/hyp.187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parthasarathy, B., N. A. Sontakke, A. A. Monot, and D. R. Kothawale, 1987: Droughts/floods in the summer monsoon season over different meteorological subdivisions of India for the period 1871–1984. J. Climatol., 7, 5770, doi:10.1002/joc.3370070106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., J. Bhate, and A. K. Jaswal, 2008: Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett., 35, L18707, doi:10.1029/2008GL035143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reager, J. T., and J. S. Famiglietti, 2009: Global terrestrial water storage capacity and flood potential using GRACE. Geophys. Res. Lett., 36, L23402, doi:10.1029/2009GL040826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reager, J. T., B. F. Thomas, and J. S. Famiglietti, 2014: River basin flood potential inferred using GRACE gravity observations at several months lead time. Nat. Geosci., 7, 588592, doi:10.1038/ngeo2203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richey, A. S., B. F. Thomas, M.-H. Lo, J. S. Famiglietti, S. Swenson, and M. Rodell, 2015a: Uncertainty in global groundwater storage estimates in a total groundwater stress framework. Water Resour. Res., 51, 51985216, doi:10.1002/2015WR017351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richey, A. S., B. F. Thomas, M.-H. Lo, J. T. Reager, J. S. Famiglietti, K. Voss, S. Swenson, and M. Rodell, 2015b: Quantifying renewable groundwater stress with GRACE. Water Resour. Res., 51, 52175238, doi:10.1002/2015WR017349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

  • Rodell, M., I. Velicogna, and J. S. Famiglietti, 2009: Satellite-based estimates of groundwater depletion in India. Nature, 460, 9991002, doi:10.1038/nature08238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., D. P. Chambers, and J. S. Famiglietti, 2011: Groundwater and terrestrial water storage [in “State of the Climate in 2010”]. Bull. Amer. Meteor. Soc., 92 (6), S49S52.

    • Search Google Scholar
    • Export Citation
  • Samra, J., 2004: Review and analysis of drought monitoring, declaration and management in India. Working Paper 84, International Water Management Institute, 40 pp. [Available online at http://www.preventionweb.net/files/1868_VL102135.pdf.]

  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, doi:10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, S., and A. Wood, 2008: Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett., 35, L02405, doi:10.1029/2007GL032487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., 2003: Evaluation of monitoring and forecasting of summer monsoon over India and are view of monsoon drought of 2002. Proc. Natl. Acad. Sci. India, A69, 479504.

    • Search Google Scholar
    • Export Citation
  • Singh, R. P., S. Roy, and F. Kogan, 2003: Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. Int. J. Remote Sens., 24, 43934402, doi:10.1080/0143116031000084323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinha Ray, K. C., and M. P. Shewale, 2001: Probability of occurrence of drought in various subdivisions of India. Mausam, 52, 541546.

  • Sivakumar, M. V. K., D. A. Wilhite, R. P. Motha, and D. A. Wood, Eds., 2011: Agricultural drought indices: Proceedings of an expert meeting. AGM-11, WMO/TD-1572, WAOB-2011, World Meteorological Organization, 197 pp. [Available online at http://www.wamis.org/agm/pubs/agm11/agm11.pdf.]

  • Soni, A., and T. H. Syed, 2015: Diagnosing land water storage variations in major Indian river basins using GRACE observations. Global Planet. Change, 133, 263271, doi:10.1016/j.gloplacha.2015.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strassberg, G., B. R. Scanlon, and M. Rodell, 2007: Comparison of seasonal terrestrial water storage variations from GRACE with groundwater-level measurements from the High Plains Aquifer (USA). Geophys. Res. Lett., 34, L14402, doi:10.1029/2007GL030139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, S., and J. Wahr, 2006: Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett., 33, L08402, doi:10.1029/2005GL025285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Syed, T. H., J. S. Famiglietti, V. Zlotnicki, and M. Rodell, 2007: Contemporary estimates of Pan-Arctic freshwater discharge from GRACE and reanalysis. Geophys. Res. Lett., 34, L19404, doi:10.1029/2007GL031254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Syed, T. H., J. S. Famiglietti, M. Rodell, J. Chen, and C. R. Wilson, 2008: Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour. Res., 44, W02433, doi:10.1029/2006WR005779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Syed, T. H., J. S. Famiglietti, and D. P. Chambers, 2009: GRACE-based estimates of terrestrial freshwater discharge from basin to continental scales. J. Hydrometeor., 10, 2240, doi:10.1175/2008JHM993.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Syed, T. H., J. S. Famiglietti, D. P. Chambers, J. K. Willis, and K. Hilburn, 2010: Satellite-based global-ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge. Proc. Natl. Acad. Sci. USA, 107, 17 91617 921, doi:10.1073/pnas.1003292107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Syed, T. H., P. J. Webster, and J. S. Famiglietti, 2014: Assessing variability of evapotranspiration over the Ganga River basin using water balance computations. Water Resour. Res., 50, 25512565, doi:10.1002/2013WR013518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, J., H. Cheng, and L. Liu, 2014: Assessing the recent droughts in southwestern China using satellite gravimetry. Water Resour. Res., 50, 30303038, doi:10.1002/2013WR014656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins, 2004: GRACE measurements of mass variability in the earth system. Science, 305, 503505, doi:10.1126/science.1099192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, A. C., J. T. Reager, J. S. Famiglietti, and M. Rodell, 2014: A GRACE-based water storage deficit approach for hydrological drought characterization. Geophys. Res. Lett., 41, 15371545, doi:10.1002/2014GL059323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiwari, V. M., J. Wahr, and S. Swenson, 2009: Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys. Res. Lett., 36, L18401, doi:10.1029/2009GL039401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Dijk, A. I., H. E. Beck, R. S. Crosbie, R. A. M. Jeu, Y. Y. Liu, G. M. Podger, B. Timbal, and N. R. Viney, 2013: The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res., 49, 10401057, doi:10.1002/wrcr.20123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velicogna, I., 2009: Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys. Res. Lett., 36, L19503, doi:10.1029/2009GL040222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S., M. S. Beguería, and J. I. López-Moreno, 2010a: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23, 16961718, doi:10.1175/2009JCLI2909.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S., M. S. Beguería, J. I. López-Moreno, M. Angulo, and A. El Kenawy, 2010b: A new global 0.5° gridded dataset (1901–2006) of a multiscalar drought index: Comparison with current drought index datasets based on the Palmer drought severity index. J. Hydrometeor., 11, 10331043, doi:10.1175/2010JHM1224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voss, K. A., J. S. Famiglietti, M. Lo, C. De Linage, M. Rodell, and S. C. Swenson, 2013: Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris–Euphrates–western Iran region. Water Resour. Res., 49, 904914, doi:10.1002/wrcr.20078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wahr, J., S. Swenson, V. Zlotnicki, and I. Velicogna, 2004: Time-variable gravity from GRACE: First results. Geophys. Res. Lett., 31, L11501, doi:10.1029/2004GL019779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wells, N., S. Goddard, and M. J. Hayes, 2004: A self-calibrating Palmer drought severity index. J. Climate, 17, 23352351, doi:10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., 2000: Drought as a natural hazard: Concepts and definitions. Droughts: A Global Assessment, Routledge, 3–18.

  • Wilhite, D. A., 2006: Drought monitoring, mitigation and preparedness in the United States: An end to end approach. WMO Task Force on Socio‐Economic Application of Public Weather Services, Geneva, Switzerland, WMO, 32 pp. [Available online at https://www.wmo.int/pages/prog/amp/pwsp/documents/Wilhite_WMO_Drought_PWS.pdf.]

  • Yevjevich, V., 1967: An objective approach to definitions and investigations of continental hydrologic droughts. Hydrology Paper 23, Colorado State University, 25 pp. [Available online at https://dspace.library.colostate.edu/bitstream/handle/10217/61303/HydrologyPapers_n23.pdf?sequence=1.]

  • Yirdaw, S. Z., K. R. Snelgrove, and C. O Agboma, 2008: GRACE satellite observations of terrestrial moisture changes for drought characterization in the Canadian Prairie. J. Hydrol., 356, 8492, doi:10.1016/j.jhydrol.2008.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Z., S. Piao, X. Lin, G. Yin, S. Peng, P. Ciais, and R. B. Myneni, 2012: Global evapotranspiration over the past three decades: Estimation based on the water balance equation combined with empirical models. Environ. Res. Lett., 7, 014026, doi:10.1088/1748-9326/7/1/014026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D., Q. Zhang, A. D. Werner, and X. Liu, 2016: GRACE-based hydrological drought evaluation of the Yangtze River basin, China. J. Hydrometeor., 17, 811828, doi:10.1175/JHM-D-15-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3436 881 59
PDF Downloads 1841 288 17