• Abatzoglou, J. T., 2013: Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol., 33, 121131, doi:10.1002/joc.3413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderton, S. P., S. M. White, and B. Alvera, 2004: Evaluation of spatial variability in snow water equivalent for a high mountain catchment. Hydrol. Processes, 18, 435453, doi:10.1002/hyp.1319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., I. Hanssen-Bauer, and D. Chen, 2008: Empirical–Statistical Downscaling. World Scientific, 228 pp.

    • Crossref
    • Export Citation
  • Curry, C., D. van der Kamp, and A. Monahan, 2012: Statistical downscaling of historical monthly mean winds over a coastal region of complex terrain. I. Predicting wind speed. Climate Dyn., 38, 12811299, doi:10.1007/s00382-011-1173-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, doi:10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and K. Kok, 2004: A combined physical–statistical approach for the downscaling of model wind speed. Wea. Forecasting, 19, 485495, doi:10.1175/1520-0434(2004)019<0485:ACPAFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erickson, T. A., M. W. Williams, and A. Winstral, 2005: Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States. Water Resour. Res., 41, W04014, doi:10.1029/2003WR002973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Etienne, C., A. Lehmann, S. Goyette, J.-I. Lopez-Moreno, and M. Beniston, 2010: Spatial predictions of extreme wind speeds over Switzerland using generalized additive models. J. Appl. Meteor. Climatol., 49, 19561970, doi:10.1175/2010JAMC2206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiddes, J., and S. Gruber, 2014: TopoSCALE v.1.0: Downscaling gridded climate data in complex terrain. Geosci. Model Dev., 7, 387405, doi:10.5194/gmd-7-387-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freudiger, D., I. Kohn, K. Stahl, and M. Weiler, 2014: Large-scale analysis of changing frequencies of rain-on-snow events with flood-generation potential. Hydrol. Earth Syst. Sci., 18, 26952709, doi:10.5194/hess-18-2695-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, L., M. Bernhardt, and K. Schulz, 2012: Elevation correction of ERA-Interim temperature data in complex terrain. Hydrol. Earth Syst. Sci., 16, 46614673, doi:10.5194/hess-16-4661-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harindra, J., and F. Shermal, 2012: Environmental fluid dynamics. Handbook of Environmental Fluid Dynamics, Vol. 1, CRC Press, 3–17.

    • Crossref
    • Export Citation
  • Horvath, K., D. Koracin, R. Vellore, J. Jiang, and R. Belu, 2012: Sub-kilometer dynamical downscaling of near-surface winds in complex terrain using WRF and MM5 mesoscale models. J. Geophys. Res., 117, D11111, doi:10.1029/2012JD017432.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-Y., S. Capps, S.-C. Huang, and A. Hall, 2015: Downscaling near-surface wind over complex terrain using a physically-based statistical modeling approach. Climate Dyn., 44, 529542, doi:10.1007/s00382-014-2137-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenness, J., 2006: Topographic Position Index extension for ArcView 3.x, v. 1.2. Accessed 6 December 2016. [Available online at http://www.jennessent.com/arcview/tpi.htm.]

  • Jiménez, P. A., and J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF Model. J. Appl. Meteor. Climatol., 51, 300316, doi:10.1175/JAMC-D-11-084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kattlemann, R., 1997: Flooding from rain-on-snow events in the Sierra Nevada. IAHS Publ., 239, 5965.

  • Kirchmeier, M. C., D. J. Lorenz, and D. J. Vimont, 2014: Statistical downscaling of daily wind speed variations. J. Appl. Meteor. Climatol., 53, 660675, doi:10.1175/JAMC-D-13-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, M., D. Marks, J. Dozier, M. L. Reba, and A. Winstral, 2013: Evaluation of distributed hydrologic impacts of temperature-index and energy-based snow models. Adv. Water Resour., 56, 7789, doi:10.1016/j.advwatres.2013.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehning, M., H. Löwe, M. Ryser, and N. Raderschall, 2008: Inhomogeneous precipitation distribution and snow transport in steep terrain. Water Resour. Res., 44, W07404, doi:10.1029/2007WR006545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and M. Sturm, 1998: A snow-transport model for complex terrain. J. Glaciol., 44, 498516, doi:10.3198/1998JoG44-148-498-516.

  • Marks, D., J. Kimball, D. Tingey, and T. Link, 1998: The sensitivity of snowmelt processes to climate conditions and forest cover during rain-on-snow; a case study of the 1996 Pacific Northwest flood. Hydrol. Processes, 12, 15691587, doi:10.1002/(SICI)1099-1085(199808/09)12:10/11<1569::AID-HYP682>3.0.CO;2-L.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, D., A. Winstral, and M. Seyfried, 2002: Simulation of terrain and forest shelter effects on patterns of snow deposition, snowmelt and runoff over a semi-arid mountain catchment. Hydrol. Processes, 16, 36053626, doi:10.1002/hyp.1237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mott, R., M. Schirmer, and M. Lehning, 2011: Scaling properties of wind and snow depth distribution in an Alpine catchment. J. Geophys. Res., 116, D06106, doi:10.1029/2010JD014886.

    • Search Google Scholar
    • Export Citation
  • Nelder, J. A., and R. Mead, 1965: A simplex method for function minimization. Comput. J., 7, 308313, doi:10.1093/comjnl/7.4.308.

  • Painter, T. H., and Coauthors, 2016: The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. Remote Sens. Environ., 184, 139152, doi:10.1016/j.rse.2016.06.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., D. M. Gray, and P. G. Landine, 1993: The Prairie Blowing Snow Model: Characteristics, validation, operation. J. Hydrol., 144, 165192, doi:10.1016/0022-1694(93)90171-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., R. E. Stewart, and P. H. Whitfield, 2016: The 2013 flood event in the South Saskatchewan and Elk River basins: Causes, assessment and damages. Can. Water Resour. J., 41, 105117, doi:10.1080/07011784.2015.1089190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purves, R. S., J. S. Barton, W. A. Mackaness, and D. E. Sugden, 1998: The development of a rule-based spatial model of wind transport and deposition of snow. Ann. Glaciol., 26, 197202, doi:10.3198/1998AoG26-1-197-202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raderschall, N., M. Lehning, and C. Schär, 2008: Fine-scale modeling of the boundary layer wind field over steep topography. Water Resour. Res., 44, W09425, doi:10.1029/2007WR006544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Development Core Team, 2015: R: A language and environment for statistical computing. R Foundation for Statistical Computing, accessed 6 December 2016. [Available online at https://www.r-project.org/.]

  • Running, S. W., R. R. Nemani, and R. D. Hungerford, 1987: Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis. Can. J. For. Res., 17, 472483, doi:10.1139/x87-081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salameh, T., P. Drobinski, M. Vrac, and P. Naveau, 2009: Statistical downscaling of near-surface wind over complex terrain in southern France. Meteor. Atmos. Phys., 103, 253265, doi:10.1007/s00703-008-0330-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarkar, A., S. Singh, and D. Mitra, 2011: Wind climate modeling using Weibull and extreme value distribution. Int. J. Eng. Sci. Technol., 3, 100106, doi:10.4314/ijest.v3i5.68571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schirmer, M., V. Wirz, A. Clifton, and M. Lehning, 2011: Persistence in intra-annual snow depth distribution Part 1: Measurements and topographic control. Water Resour. Res., 47, W09516, doi:10.1029/2010WR009426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuart, B. D., 2012: Laboratory modeling. Handbook of Environmental Fluid Dynamics, Vol. 2, CRC Press, 443–456.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp.

    • Crossref
    • Export Citation
  • Surfleet, C. G., and D. Tullos, 2013: Variability in effect of climate change on rain-on-snow peak flow events in a temperate climate. J. Hydrol., 479, 2434, doi:10.1016/j.jhydrol.2012.11.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trubilowicz, J. W., J. M. Shea, G. Jost, and R. D. Moore, 2016: Suitability of North American Regional Reanalysis (NARR) output for hydrologic modelling and analysis in mountainous terrain. Hydrol. Processes, 30, 23322347, doi:10.1002/hyp.10795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Donk, S. J., L. E. Wagner, E. L. Skidmore, and J. Tartarko, 2005: Comparison of the Weibull model with measured wind speed distributions for stochastic wind generation. Trans. ASABE, 48, 503510, doi:10.13031/2013.18324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, A., 2001: Topographic position and landforms analysis. Accessed 6 December 2016. [Available online at www.jennessent.com/downloads/TPI-poster-TNC_18x22.pdf.]

  • Wever, N., T. Jonas, C. Fierz, and M. Lehning, 2014: Model simulations of the modulating effect of the snow cover in a rain-on-snow event. Hydrol. Earth Syst. Sci., 18, 46574669, doi:10.5194/hess-18-4657-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winstral, A., and D. Marks, 2002: Simulating wind fields and snow redistribution using terrain-based parameters to model snow accumulation and melt over a semi-arid mountain catchment. Hydrol. Processes, 16, 35853603, doi:10.1002/hyp.1238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winstral, A., K. Elder, and R. E. Davis, 2002: Spatial snow modeling of wind-redistributed snow using terrain-based parameters. J. Hydrometeor., 3, 524538, doi:10.1175/1525-7541(2002)003<0524:SSMOWR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winstral, A., D. Marks, and R. Gurney, 2009: An efficient method for distributing wind speeds over heterogeneous terrain. Hydrol. Processes, 23, 25262535, doi:10.1002/hyp.7141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winstral, A., D. Marks, and R. Gurney, 2013: Simulating wind-affected snow accumulations at catchment to basin scales. Adv. Water Resour., 55, 6479, doi:10.1016/j.advwatres.2012.08.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winstral, A., D. Marks, and R. Gurney, 2014: Assessing the sensitivities of a distributed snow model to forcing data resolution. J. Hydrometeor., 15, 13661383, doi:10.1175/JHM-D-13-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N., 2000: Wind flow over complex terrain: A historical perspective and the prospect for large-eddy modelling. Bound.-Layer Meteor., 96, 1132, doi:10.1023/A:1002017732694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Würzer, S., T. Jonas, N. Wever, and M. Lehning, 2016: Influence of initial snowpack properties on runoff formation during rain-on-snow events. J. Hydrometeor., 17, 18011815, doi:10.1175/JHM-D-15-0181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Žagar, N., M. Žagar, J. Cedilnik, G. Gregorič, and J. Rakovec, 2006: Validation of mesoscale low-level winds obtained by dynamical downscaling of ERA40 over complex terrain. Tellus, 58A, 445455, doi:10.1111/j.1600-0870.2006.00186.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1052 581 1
PDF Downloads 956 512 1

Statistical Downscaling of Gridded Wind Speed Data Using Local Topography

View More View Less
  • 1 WSL-SLF, Davos Dorf, Switzerland
Restricted access

Abstract

Winds, particularly high winds, strongly affect snowmelt and snow redistribution. High winds during rain-on-snow events can lead to catastrophic flooding while strong redistribution events in mountain environments can generate dangerous avalanche conditions. To provide adequate warnings, accurate wind data are required. Yet, mountain wind fields exhibit a high degree of heterogeneity at small spatial lengths that are not resolved by currently available gridded forecast data. Wind data from over 200 stations across Switzerland were used to evaluate two forecast surface wind products (~2- and 7-km horizontal resolution) and develop a statistical downscaling technique to capture these finer-scaled heterogeneities. Wind exposure metrics derived from a 25-m horizontal resolution digital elevation model effectively segregated high, moderate, and low wind speed sites. Forecast performance was markedly compromised and biased low at the exposed sites and biased high at the sheltered, valley sites. It was also found that the variability of predicted wind speeds at these sites did not accurately represent the observed variability. A novel optimization scheme that accounted for local terrain structure while also nudging the forecasted distributions to better match the observed distributions and variability was developed. The resultant statistical downscaling technique notably decreased biases across a range of elevations and exposures and provided a better match to observed wind speed distributions.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Adam Winstral, adam.winstral@slf.ch

Abstract

Winds, particularly high winds, strongly affect snowmelt and snow redistribution. High winds during rain-on-snow events can lead to catastrophic flooding while strong redistribution events in mountain environments can generate dangerous avalanche conditions. To provide adequate warnings, accurate wind data are required. Yet, mountain wind fields exhibit a high degree of heterogeneity at small spatial lengths that are not resolved by currently available gridded forecast data. Wind data from over 200 stations across Switzerland were used to evaluate two forecast surface wind products (~2- and 7-km horizontal resolution) and develop a statistical downscaling technique to capture these finer-scaled heterogeneities. Wind exposure metrics derived from a 25-m horizontal resolution digital elevation model effectively segregated high, moderate, and low wind speed sites. Forecast performance was markedly compromised and biased low at the exposed sites and biased high at the sheltered, valley sites. It was also found that the variability of predicted wind speeds at these sites did not accurately represent the observed variability. A novel optimization scheme that accounted for local terrain structure while also nudging the forecasted distributions to better match the observed distributions and variability was developed. The resultant statistical downscaling technique notably decreased biases across a range of elevations and exposures and provided a better match to observed wind speed distributions.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Adam Winstral, adam.winstral@slf.ch
Save