Mapping Flash Flood Severity in the United States

Manabendra Saharia School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma
Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma
Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Manabendra Saharia in
Current site
Google Scholar
PubMed
Close
,
Pierre-Emmanuel Kirstetter School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma
Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Pierre-Emmanuel Kirstetter in
Current site
Google Scholar
PubMed
Close
,
Humberto Vergara Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma
Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Humberto Vergara in
Current site
Google Scholar
PubMed
Close
,
Jonathan J. Gourley NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Jonathan J. Gourley in
Current site
Google Scholar
PubMed
Close
,
Yang Hong School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yang Hong in
Current site
Google Scholar
PubMed
Close
, and
Marine Giroud Department of Risk and Crises Management, École des Mines d’Alès, Alès, France

Search for other papers by Marine Giroud in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Flash floods, a subset of floods, are a particularly damaging natural hazard worldwide because of their multidisciplinary nature, difficulty in forecasting, and fast onset that limits emergency responses. In this study, a new variable called “flashiness” is introduced as a measure of flood severity. This work utilizes a representative and long archive of flooding events spanning 78 years to map flash flood severity, as quantified by the flashiness variable. Flood severity is then modeled as a function of a large number of geomorphological and climatological variables, which is then used to extend and regionalize the flashiness variable from gauged basins to a high-resolution grid covering the conterminous United States. Six flash flood “hotspots” are identified and additional analysis is presented on the seasonality of flash flooding. The findings from this study are then compared to other related datasets in the United States, including National Weather Service storm reports and a historical flood fatalities database.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Pierre-Emmanuel Kirstetter, pierre.kirstetter@noaa.gov

Abstract

Flash floods, a subset of floods, are a particularly damaging natural hazard worldwide because of their multidisciplinary nature, difficulty in forecasting, and fast onset that limits emergency responses. In this study, a new variable called “flashiness” is introduced as a measure of flood severity. This work utilizes a representative and long archive of flooding events spanning 78 years to map flash flood severity, as quantified by the flashiness variable. Flood severity is then modeled as a function of a large number of geomorphological and climatological variables, which is then used to extend and regionalize the flashiness variable from gauged basins to a high-resolution grid covering the conterminous United States. Six flash flood “hotspots” are identified and additional analysis is presented on the seasonality of flash flooding. The findings from this study are then compared to other related datasets in the United States, including National Weather Service storm reports and a historical flood fatalities database.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Pierre-Emmanuel Kirstetter, pierre.kirstetter@noaa.gov
Save
  • Adhikari, P., Y. Hong, K. R. Douglas, D. B. Kirschbaum, J. Gourley, R. Adler, and G. R. Brakenridge, 2010: A digitized global flood inventory (1998–2008): Compilation and preliminary results. Nat. Hazards, 55, 405422, doi:10.1007/s11069-010-9537-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akantziliotou, C., R. Rigby, and D. Stasinopoulos, 2002: The R implementation of generalized additive models for location, scale and shape. Statistical Modelling in Society: Proceedings of the 17th International Workshop on Statistical Modelling, Statistical Modelling Society, 75–83.

  • Ashley, S. T., and W. S. Ashley, 2008: Flood fatalities in the United States. J. Appl. Meteor. Climatol., 47, 805818, doi:10.1175/2007JAMC1611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhaskar, N., M. French, and G. Kyiamah, 2000: Characterization of flash floods in eastern Kentucky. J. Hydrol. Eng., 5, 327331, doi:10.1061/(ASCE)1084-0699(2000)5:3(327).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calianno, M., I. Ruin, and J. J. Gourley, 2013: Supplementing flash flood reports with impact classifications. J. Hydrol., 477, 116, doi:10.1016/j.jhydrol.2012.09.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castellarin, A., 2007: Probabilistic envelope curves for design flood estimation at ungauged sites. Water Resour. Res., 43, W04406, doi:10.1029/2005WR004384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casteller, A., M. Stoffel, S. Crespo, R. Villalba, C. Corona, and E. Bianchi, 2015: Dendrogeomorphic reconstruction of flash floods in the Patagonian Andes. Geomorphology, 228, 116123, doi:10.1016/j.geomorph.2014.08.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, J. E., 1987a: A comparison of the largest rainfall–runoff floods in the United States with those of the People’s Republic of China and the world. J. Hydrol., 96, 101115, doi:10.1016/0022-1694(87)90146-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, J. E., 1987b: Hydraulics and basin morphometry of the largest flash floods in the conterminous United States. J. Hydrol., 93, 313338, doi:10.1016/0022-1694(87)90102-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., Z. L. Flamig, V. Lakshmanan, B. T. Kaney, V. Farmer, H. D. Reeves, and L. P. Rothfusz, 2014: MPING: Crowd-sourcing weather reports for research. Bull. Amer. Meteor. Soc., 95, 13351342, doi:10.1175/BAMS-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fahrmeir, L., and S. Lang, 2001: Bayesian semiparametric regression analysis of multicategorical time–space data. Ann. Inst. Stat. Math., 53, 1130, doi:10.1023/A:1017904118167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flood Safety Education Project, 2005: Flash Flood Alley. Flood Safety Education Project, Boulder, CO, DVD.

  • Fry, J. A., and Coauthors, 2011: Completion of the 2006 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sensing, 77, 858864.

    • Search Google Scholar
    • Export Citation
  • Gaume, E., and Coauthors, 2009: A compilation of data on European flash floods. J. Hydrol., 367, 7078, doi:10.1016/j.jhydrol.2008.12.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaume, E., L. Gaál, A. Viglione, J. Szolgay, S. Kohnová, and G. Blöschl, 2010: Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites. J. Hydrol., 394, 101117, doi:10.1016/j.jhydrol.2010.01.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgakakos, K. P., 2006: Analytical results for operational flash flood guidance. J. Hydrol., 317, 81103, doi:10.1016/j.jhydrol.2005.05.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gochis, D., and Coauthors, 2015: The Great Colorado Flood of September 2013. Bull. Amer. Meteor. Soc., 96, 14611487, doi:10.1175/BAMS-D-13-00241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., J. M. Erlingis, T. M. Smith, K. L. Ortega, and Y. Hong, 2010: Remote collection and analysis of witness reports on flash floods. J. Hydrol., 394, 5362, doi:10.1016/j.jhydrol.2010.05.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., and Coauthors, 2013: A Unified Flash Flood Database across the United States. Bull. Amer. Meteor. Soc., 94, 799805, doi:10.1175/BAMS-D-12-00198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., and Coauthors, 2016: The Flooded Locations And Simulated Hydrographs (FLASH) project: Improving the tools for flash flood monitoring and prediction across the United States. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00247.1, in press.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, and J. H. Lawrimore, 2004: Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. J. Hydrometeor., 5, 6485, doi:10.1175/1525-7541(2004)005<0064:CCOTHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18, 13261350, doi:10.1175/JCLI3339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastie, T. J., and R. J. Tibshirani, 1990: Generalized Additive Models. CRC Press, 352 pp.

  • Hong, Y., P. Adhikari, and J. J. Gourley, 2012: Flash flood. Encyclopedia of Natural Hazards, P. Bobrowsky, Ed., Encyclopedia of Earth Science Series, Springer, 324–325, doi:10.1007/978-1-4020-4399-4_136.

    • Crossref
    • Export Citation
  • Hydrologic Services Program, 2012: National Weather Service manual 10-950. National Weather Service, 5 pp. [Available online at http://www.nws.noaa.gov/directives/sym/pd01009050curr.pdf.]

  • Kirstetter, P.-E., J. J. Gourley, Y. Hong, J. Zhang, S. Moazamigoodarzi, C. Langston, and A. Arthur, 2015: Probabilistic precipitation rate estimates with ground-based radar networks. Water Resour. Res., 51, 14221442, doi:10.1002/2014WR015672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., 2001: The most extreme precipitation events over the eastern United States from 1950 to 1996: Considerations of scale. J. Hydrometeor., 2, 309325, doi:10.1175/1525-7541(2001)002<0309:TMEPEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchi, L., and Coauthors, 2009: Comprehensive post-event survey of a flash flood in western Slovenia: Observation strategy and lessons learned. Hydrol. Processes, 23, 37613770, doi:10.1002/hyp.7542.

    • Search Google Scholar
    • Export Citation
  • Marchi, L., M. Borga, E. Preciso, and E. Gaume, 2010: Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J. Hydrol., 394, 118133, doi:10.1016/j.jhydrol.2010.07.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCullagh, P., and J. A. Nelder, 1989: Generalized Linear Models. Chapman and Hall, 511 pp.

    • Crossref
    • Export Citation
  • Merz, R., and G. Blöschl, 2003: A process typology of regional floods. Water Resour. Res., 39, 1340, doi:10.1029/2002WR001952.

  • Michaud, J. D., K. K. Hirschboeck, and M. Winchell, 2001: Regional variations in small-basin floods in the United States. Water Resour. Res., 37, 14051416, doi:10.1029/2000WR900283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D. A., and R. A. White, 1998: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interact., 2, doi:10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NWS, 2014: Annual flood loss summary reports. Accessed 1 April 2016. [Available online at http://www.nws.noaa.gov/hic/summaries/.]

  • Ortega, K. L., T. M. Smith, K. L. Manross, A. G. Kolodziej, K. A. Scharfenberg, A. Witt, and J. J. Gourley, 2009: The Severe Hazards Analysis and Verification Experiment. Bull. Amer. Meteor. Soc., 90, 15191530, doi:10.1175/2009BAMS2815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perucca, L. P., and Y. E. Angilieri, 2011: Morphometric characterization of del Molle basin applied to the evaluation of flash floods hazard, Iglesia Department, San Juan, Argentina. Quat. Int., 233, 8186, doi:10.1016/j.quaint.2010.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and M. W. Downton, 2000: Precipitation and damaging floods: Trends in the United States, 1932–97. J. Climate, 13, 36253637, doi:10.1175/1520-0442(2000)013<3625:PADFTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, S., J. Schaake, and Z. Zhang, 2007: A distributed hydrologic model and threshold frequency-based method for flash flood forecasting at ungauged locations. J. Hydrol., 337, 402420, doi:10.1016/j.jhydrol.2007.02.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rigby, R. A., and D. M. Stasinopoulos, 2001: The GAMLSS project: A flexible approach to statistical modelling. New Trends in Statistical Modelling: Proceedings of the 16th International Workshop on Statistical Modelling, B. Klein and L. Korsholm, Eds., University of Southern Denmark, 337–345.

  • Rigby, R. A., and D. M. Stasinopoulos, 2005: Generalized additive models for location, scale and shape. J. Roy. Stat. Soc. Ser. C Appl. Stat., 54, 507554, doi:10.1111/j.1467-9876.2005.00510.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz-Villanueva, V., A. Díez-Herrero, J. M. Bodoque, J. A. Ballesteros Cánovas, and M. Stoffel, 2013: Characterisation of flash floods in small ungauged mountain basins of central Spain using an integrated approach. Catena, 110, 3243, doi:10.1016/j.catena.2013.06.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharif, H. O., A. A. Hassan, S. Bin-Shafique, H. Xie, and J. Zeitler, 2010: Hydrologic modeling of an extreme flood in the Guadalupe River in Texas. J. Amer. Water Resour. Assoc., 46, 881891, doi:10.1111/j.1752-1688.2010.00459.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. K., and J. A. Smith, 2015: The flashiest watersheds in the contiguous United States. J. Hydrometeor., 16, 23652381, doi:10.1175/JHM-D-14-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M. W., J. L. Carrivick, J. Hooke, and M. J. Kirkby, 2014: Reconstructing flash flood magnitudes using ‘Structure-from-Motion’: A rapid assessment tool. J. Hydrol., 519B, 19141927, doi:10.1016/j.jhydrol.2014.09.078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stasinopoulos, D. M., and R. A. Rigby, 2007: Generalized additive models for location scale and shape (GAMLSS) in R. J. Stat. Software, 23, 146, doi:10.18637/jss.v023.i07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturdevant-Rees, P., J. A. Smith, J. Morrison, and M. L. Baeck, 2001: Tropical storms and the flood hydrology of the central Appalachians. Water Resour. Res., 37, 21432168, doi:10.1029/2000WR900310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. Department of Commerce, 2016: Flash flooding definition. Accessed 20 December 2016. [Available online at http://www.weather.gov/phi/FlashFloodingDefinition.]

  • U.S. Soil Conservation Service, 1972: Hydrology. SCS National Engineering Handbook, Supplement A, section 4, chapter 10, USDA.

  • Villarini, G., and J. A. Smith, 2010: Flood peak distributions for the eastern United States. Water Resour. Res., 46, W06504, doi:10.1029/2009WR008395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., R. Goska, J. A. Smith, and G. A. Vecchi, 2014: North Atlantic tropical cyclones and U.S. flooding. Bull. Amer. Meteor. Soc., 95, 13811388, doi:10.1175/BAMS-D-13-00060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogel, R. M., A. Zafirakou-Koulouris, and N. C. Matalas, 2001: Frequency of record-breaking floods in the United States. Water Resour. Res., 37, 17231731, doi:10.1029/2001WR900019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wisser, D., B. M. Fekete, C. J. Vörösmarty, and A. H. Schumann, 2010: Reconstructing 20th century global hydrography: A contribution to the Global Terrestrial Network–Hydrology (GTN-H). Hydrol. Earth Syst. Sci., 14, 124, doi:10.5194/hess-14-1-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5052 1672 109
PDF Downloads 3963 831 75