The Use of Reanalyses and Gridded Observations as Weather Input Data for a Hydrological Model: Comparison of Performances of Simulated River Flows Based on the Density of Weather Stations

Gilles R. C. Essou Department of Construction Engineering, École de Technologie Supérieure, Université du Québec à Montréal, Montreal, Quebec, Canada

Search for other papers by Gilles R. C. Essou in
Current site
Google Scholar
PubMed
Close
,
François Brissette Department of Construction Engineering, École de Technologie Supérieure, Université du Québec à Montréal, Montreal, Quebec, Canada

Search for other papers by François Brissette in
Current site
Google Scholar
PubMed
Close
, and
Philippe Lucas-Picher Department of Construction Engineering, École de Technologie Supérieure, and Centre pour l'Étude et la Simulation du Climat à l'Échelle Régionale, Department of Earth and Atmospheric Sciences, Université du Québec à Montreal, Montreal, Quebec, Canada

Search for other papers by Philippe Lucas-Picher in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Precipitation forcing is critical for hydrological modeling as it has a strong impact on the accuracy of simulated river flows. In general, precipitation data used in hydrological modeling are provided by weather stations. However, in regions with sparse weather station coverage, the spatial interpolation of the individual weather stations provides a rough approximation of the real precipitation fields. In such regions, precipitation from interpolated weather stations is generally considered unreliable for hydrological modeling. Precipitation estimates from reanalyses could represent an interesting alternative in regions where the weather station density is low. This article compares the performances of river flows simulated by a watershed model using precipitation and temperature estimates from reanalyses and gridded observations. The comparison was carried out based on the density of surface weather stations for 316 Canadian watersheds located in three climatic regions. Three state-of-the-art atmospheric reanalyses—ERA-Interim, CFSR, and MERRA—and one gridded observations database over Canada—Natural Resources Canada (NRCan)—were used. Results showed that the Nash–Sutcliffe values of simulated river flows using precipitation and temperature data from CFSR and NRCan were generally equivalent regardless of the weather station density. ERA-Interim and MERRA performed significantly better than NRCan for watersheds with weather station densities of less than 1 station per 1000 km2 in the mountainous region. Overall, these results indicate that for hydrological modeling in regions with high spatial variability of precipitation such as mountainous regions, reanalyses perform better than gridded observations when the weather station density is low.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Gilles R. C. Essou, essougilles@yahoo.fr; gilles.essou.1@ens.etsmtl.ca

Abstract

Precipitation forcing is critical for hydrological modeling as it has a strong impact on the accuracy of simulated river flows. In general, precipitation data used in hydrological modeling are provided by weather stations. However, in regions with sparse weather station coverage, the spatial interpolation of the individual weather stations provides a rough approximation of the real precipitation fields. In such regions, precipitation from interpolated weather stations is generally considered unreliable for hydrological modeling. Precipitation estimates from reanalyses could represent an interesting alternative in regions where the weather station density is low. This article compares the performances of river flows simulated by a watershed model using precipitation and temperature estimates from reanalyses and gridded observations. The comparison was carried out based on the density of surface weather stations for 316 Canadian watersheds located in three climatic regions. Three state-of-the-art atmospheric reanalyses—ERA-Interim, CFSR, and MERRA—and one gridded observations database over Canada—Natural Resources Canada (NRCan)—were used. Results showed that the Nash–Sutcliffe values of simulated river flows using precipitation and temperature data from CFSR and NRCan were generally equivalent regardless of the weather station density. ERA-Interim and MERRA performed significantly better than NRCan for watersheds with weather station densities of less than 1 station per 1000 km2 in the mountainous region. Overall, these results indicate that for hydrological modeling in regions with high spatial variability of precipitation such as mountainous regions, reanalyses perform better than gridded observations when the weather station density is low.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Gilles R. C. Essou, essougilles@yahoo.fr; gilles.essou.1@ens.etsmtl.ca
Save
  • Adam, J. C., and D. P. Lettenmaier, 2003: Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res., 108, 4257, doi:10.1029/2002JD002499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andréassian, V., C. Perrin, C. Michel, I. Usart-Sanchez, and J. Lavabre, 2001: Impact of imperfect rainfall knowledge on the efficiency and the parameters of watershed models. J. Hydrol., 250, 206223, doi:10.1016/S0022-1694(01)00437-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arsenault, R., and F. Brissette, 2014: Determining the optimal spatial distribution of weather station networks for hydrological modeling purposes using RCM datasets: An experimental approach. J. Hydrometeor., 15, 517526, doi:10.1175/JHM-D-13-088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arsenault, R., A. Poulin, P. Côté, and F. Brissette, 2014: Comparison of stochastic optimization algorithms in hydrological model calibration. J. Hydrol. Eng., 19, 13741384, doi:10.1061/(ASCE)HE.1943-5584.0000938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arsenault, R., R. Bazile, C. Ouellet-Dallaire, and F. Brissette, 2016: CANOPEX: A Canadian hydrometeorological watershed database. Hydrol. Processes, 30, 27342736, doi:10.1002/hyp.10880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, W. G., T. R. Oke, and W. Rouse, Eds., 1997: Surface Climates of Canada. McGill–Queen’s University Press, 400 pp.

  • Chaplot, V., A. Saleh, and D. Jaynes, 2005: Effect of the accuracy of spatial rainfall information on the modeling of water, sediment, and NO3–N loads at the watershed level. J. Hydrol., 312, 223234, doi:10.1016/j.jhydrol.2005.02.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., F. P. Brissette, and R. Leconte, 2012: Downscaling of weather generator parameters to quantify hydrological impacts of climate change. Climate Res., 51, 185, doi:10.3354/cr01062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, W., S. J. Kim, P. F. Rasmussen, and A. R. Moore, 2009: Use of the North American Regional Reanalysis for hydrological modelling in Manitoba. Can. Water Resour. J., 34, 1736, doi:10.4296/cwrj3401017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coulibaly, P., J. Samuel, A. Pietroniro, and D. Harvey, 2013: Evaluation of Canadian National Hydrometric Network density based on WMO 2008 standards. Can. Water Resour. J., 38, 159167, doi:10.1080/07011784.2013.787181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., 2006: Guidelines for assessing the suitability of spatial climate data sets. Int. J. Climatol., 26, 707721, doi:10.1002/joc.1322.

  • Dee, D., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, M., B. Austin, F. Fabry, and G. Austin, 1993: The effect of gauge sampling density on the accuracy of streamflow prediction for rural catchments. J. Hydrol., 142, 445476, doi:10.1016/0022-1694(93)90023-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essou, G. R. C., F. Sabarly, P. Lucas-Picher, F. Brissette, and A. Poulin, 2016: Can precipitation and temperature from meteorological reanalyses be used for hydrological modeling? J. Hydrometeor., 17, 19291950, doi:10.1175/JHM-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faurès, J.-M., D. Goodrich, D. A. Woolhiser, and S. Sorooshian, 1995: Impact of small-scale spatial rainfall variability on runoff modeling. J. Hydrol., 173, 309326, doi:10.1016/0022-1694(95)02704-S.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., C. J. Vörösmarty, J. O. Roads, and C. J. Willmott, 2004: Uncertainties in precipitation and their impacts on runoff estimates. J. Climate, 17, 294304, doi:10.1175/1520-0442(2004)017<0294:UIPATI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortin, V., 2000: Le modèle météo-apport HSAMI: Historique, théorie et application. Institut de recherche d’Hydro-Québec, 68 pp.

  • Fuka, D. R., M. T. Walter, C. MacAlister, A. T. Degaetano, T. S. Steenhuis, and Z. M. Easton, 2014: Using the Climate Forecast System Reanalysis as weather input data for watershed models. Hydrol. Processes, 28, 56135623, doi:10.1002/hyp.10073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gervais, M., J. R. Gyakum, E. Atallah, L. B. Tremblay, and R. B. Neale, 2014: How well are the distribution and extreme values of daily precipitation over North America represented in the Community Climate System Model? A comparison to reanalysis, satellite, and gridded station data. J. Climate, 27, 52195239, doi:10.1175/JCLI-D-13-00320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodison, B. E., P. Y. T. Louie, and D. Yang, 1998: WMO solid precipitation intercomparison. Instruments and Observing Methods Rep. 67, WMO/TD-872, 212 pp. [Available online at https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-67-solid-precip/WMOtd872.pdf.]

  • Hansen, N., and A. Ostermeier, 1996: Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. Proceedings of IEEE International Conference on Evolutionary Computation 1996, IEEE, 312317, doi:10.1109/ICEC.1996.542381.

    • Crossref
    • Export Citation
  • Hansen, N., and A. Ostermeier, 2001: Completely derandomized self-adaptation in evolution strategies. Evol. Comput., 9, 159195, doi:10.1162/106365601750190398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkinson, R. F., D. W. McKenney, E. J. Milewska, M. F. Hutchinson, P. Papadopol, and L. A. Vincent, 2011: Impact of aligning climatological day on gridding daily maximum–minimum temperature and precipitation over Canada. J. Appl. Meteor. Climatol., 50, 16541665, doi:10.1175/2011JAMC2684.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutchinson, M. F., 1995: Interpolating mean rainfall using thin plate smoothing splines. Int. J. Geogr. Inf. Syst., 9, 385403, doi:10.1080/02693799508902045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutchinson, M. F., 2004: ANUSPLIN version 4.3. User guide, Centre for Resources and Environmental Studies, Australian National University, accessed 15 December 2013. [Available online at http://fennerschool.anu.edu.au/research/products.]

  • Hutchinson, M. F., D. W. McKenney, K. Lawrence, J. H. Pedlar, R. F. Hopkinson, E. Milewska, and P. Papadopol, 2009: Development and testing of Canada-wide interpolated spatial models of daily minimum–maximum temperature and precipitation for 1961–2003. J. Appl. Meteor. Climatol., 48, 725741, doi:10.1175/2008JAMC1979.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR Reanalysis 40-Year Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006: World map of the Köppen–Geiger climate classification updated. Meteor. Z., 15, 259263, doi:10.1127/0941-2948/2006/0130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauri, H., T. Räsänen, and M. Kummu, 2014: Using reanalysis and remotely sensed temperature and precipitation data for hydrological modeling in monsoon climate: Mekong River case study. J. Hydrometeor., 15, 15321545, doi:10.1175/JHM-D-13-084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, doi:10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lobligeois, F., 2014: Mieux connaitre la distribution spatiale des pluies améliore-t-il la modélisation des crues? Diagnostic sur 181 bassins versants français. Ph.D. thesis, AgroParisTech, 310 pp. [Available online at http://infodoc.agroparistech.fr/index.php?lvl=author_see&id=132536.]

  • Lopes, V. L., 1996: On the effect of uncertainty in spatial distribution of rainfall on catchment modelling. Catena, 28, 107119, doi:10.1016/S0341-8162(96)00030-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, C., and H. Kunstmann, 2012: The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeor., 13, 13971420, doi:10.1175/JHM-D-11-088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

  • Minville, M., D. Cartier, C. Guay, L. A. Leclaire, C. Audet, S. Le Digabel, and J. Merleau, 2014: Improving process representation in conceptual hydrological model calibration using climate simulations. Water Resour. Res., 50, 50445073, doi:10.1002/2013WR013857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizukami, N., and M. B. Smith, 2012: Analysis of inconsistencies in multi-year gridded quantitative precipitation estimate over complex terrain and its impact on hydrologic modeling. J. Hydrol., 428–429, 129141, doi:10.1016/j.jhydrol.2012.01.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J., and J. Sutcliffe, 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oudin, L., C. Perrin, T. Mathevet, V. Andréassian, and C. Michel, 2006: Impact of biased and randomly corrupted inputs on the efficiency and the parameters of watershed models. J. Hydrol., 320, 6283, doi:10.1016/j.jhydrol.2005.07.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulin, A., F. Brissette, R. Leconte, R. Arsenault, and J.-S. Malo, 2011: Uncertainty of hydrological modelling in climate change impact studies in a Canadian, snow-dominated river basin. J. Hydrol., 409, 626636, doi:10.1016/j.jhydrol.2011.08.057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rakotomalala, R., 2008: Comparaison de populations: Tests non paramétriques. Université Lumière Lyon 2, 189 pp. [Available online at http://eric.univ-lyon2.fr/~ricco/cours/cours/Comp_Pop_Tests_Nonparametriques.pdf.]

  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. Tech. Memo. NASA/TM-2008-104606, Vol. 27, 97 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Rienecker369.pdf.]

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Servat, E., and A. Dezetter, 1991: Selection of calibration objective functions in the context of rainfall–runoff modelling in a Sudanese savannah area. Hydrol. Sci. J., 36, 307330, doi:10.1080/02626669109492517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiu, C.-J., S. C. Liu, C. Fu, A. Dai, and Y. Sun, 2012: How much do precipitation extremes change in a warming climate? Geophys. Res. Lett., 39, L17707, doi:10.1029/2012GL052762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. Kharin, X. Zhang, F. Zwiers, and D. Bronaugh, 2013a: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos., 118, 17161733, doi:10.1002/jgrd.50203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. Kharin, F. Zwiers, X. Zhang, and D. Bronaugh, 2013b: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos., 118, 24732493, doi:10.1002/jgrd.50188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A., K. Willett, P. Jones, P. Thorne, and D. Dee, 2010: Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res., 115, D01110, doi:10.1029/2009JD012442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thiessen, A. H., 1911: Precipitation averages for large areas. Mon. Wea. Rev., 39, 10821089, doi:10.1175/1520-0493(1911)39<1082b:PAFLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tozer, C., A. Kiem, and D. Verdon-Kidd, 2012: On the uncertainties associated with using gridded rainfall data as a proxy for observed. Hydrol. Earth Syst. Sci., 16, 14811499, doi:10.5194/hess-16-1481-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA‐40 re‐analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Vischel, T., 2006: Impact de la variabilité pluviométrique de méso-échelle sur la réponse des systèmes hydrologiques sahéliens: Modélisation, simulation et desegregation. Ph.D. thesis, Grenoble, INPG, 279 pp.

  • Vu, M., S. Raghavan, and S. Liong, 2012: SWAT use of gridded observations for simulating runoff—A Vietnam river basin study. Hydrol. Earth Syst. Sci., 16, 28012811, doi:10.5194/hess-16-2801-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., P. Xie, S.-H. Yoo, Y. Xue, A. Kumar, and X. Wu, 2011: An assessment of the surface climate in the NCEP Climate Forecast System Reanalysis. Climate Dyn., 37, 16011620, doi:10.1007/s00382-010-0935-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winkler, T., 1993: Standardized hydrometric data collection in Canada: The career development program for technician training. Water Int., 18, 217224, doi:10.1080/02508069308686182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2008: Density of stations for a network. Hydrology—From Measurement to Hydrological Information, Vol. 1, Guide to Hydrological Practices, 6th ed., WMO-168, World Meteorological Organization, I.2-24–I.2-28

  • Woo, M. K., and R. Thorne, 2006: Snowmelt contribution to discharge from a large mountainous catchment in subarctic Canada. Hydrol. Processes, 20, 21292139, doi:10.1002/hyp.6205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., B. Goodison, J. Metcalfe, V. Golubev, R. Bates, T. Pangburn, and C. Hanson, 1998: Accuracy of NWS 8″ standard nonrecording precipitation gauge: Results and application of WMO intercomparison. J. Atmos. Oceanic Technol., 15, 5468, doi:10.1175/1520-0426(1998)015<0054:AONSNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., and Coauthors, 2000: An evaluation of the Wyoming gauge system for snowfall measurement. Water Resour. Res., 36, 26652677, doi:10.1029/2000WR900158.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1576 652 43
PDF Downloads 846 131 5