Estimation of Needleleaf Canopy and Trunk Temperatures and Longwave Contribution to Melting Snow

K. N. Musselman Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Search for other papers by K. N. Musselman in
Current site
Google Scholar
PubMed
Close
and
J. W. Pomeroy Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Search for other papers by J. W. Pomeroy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A measurement and modeling campaign evaluated variations in tree temperatures with solar exposure at the edge of a forest clearing and how the resulting longwave radiation contributed to spatial patterns of snowmelt energy surrounding an individual tree. Compared to measurements, both a one-dimensional (1D) energy-balance model and a two-dimensional (2D) radial trunk heat transfer model that simulated trunk surface temperatures and thermal inertia performed well (RMSE and biases better than 1.7° and ±0.4°C). The 2D model that resolved a thin bark layer better simulated daytime temperature spikes. Measurements and models agreed that trunk surfaces returned to ambient air temperature values near sunset. Canopy needle temperatures modeled with a 1D energy-balance approach were within the range of measurements. The radiative transfer model simulated substantial tree-contributed snow surface longwave irradiance to a distance of approximately one-half the tree height, with higher values on the sun-exposed sides of the tree. Trunks had very localized and substantially lower longwave energy influence on snowmelt compared to that of the canopy. The temperature and radiative transfer models provide the spatially detailed information needed to develop scaling relationships for estimating net radiation for snowmelt in sparse and discontinuous forest canopies.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (http://www.ametsoc.org/PUBSCopyrightPolicy).

Corresponding author e-mail: K. N. Musselman, kmussel@ucar.edu

Abstract

A measurement and modeling campaign evaluated variations in tree temperatures with solar exposure at the edge of a forest clearing and how the resulting longwave radiation contributed to spatial patterns of snowmelt energy surrounding an individual tree. Compared to measurements, both a one-dimensional (1D) energy-balance model and a two-dimensional (2D) radial trunk heat transfer model that simulated trunk surface temperatures and thermal inertia performed well (RMSE and biases better than 1.7° and ±0.4°C). The 2D model that resolved a thin bark layer better simulated daytime temperature spikes. Measurements and models agreed that trunk surfaces returned to ambient air temperature values near sunset. Canopy needle temperatures modeled with a 1D energy-balance approach were within the range of measurements. The radiative transfer model simulated substantial tree-contributed snow surface longwave irradiance to a distance of approximately one-half the tree height, with higher values on the sun-exposed sides of the tree. Trunks had very localized and substantially lower longwave energy influence on snowmelt compared to that of the canopy. The temperature and radiative transfer models provide the spatially detailed information needed to develop scaling relationships for estimating net radiation for snowmelt in sparse and discontinuous forest canopies.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (http://www.ametsoc.org/PUBSCopyrightPolicy).

Corresponding author e-mail: K. N. Musselman, kmussel@ucar.edu
Save
  • Allen, R. G., R. Trezza, and M. Tasumi, 2006: Analytical integrated functions for daily solar radiation on slopes. Agric. For. Meteor., 139, 5573, doi:10.1016/j.agrformet.2006.05.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bales, R. C., N. P. Molotch, T. H. Painter, M. D. Dettinger, R. Rice, and J. Dozier, 2006: Mountain hydrology of the western United States. Water Resour. Res., 42, W08432, doi:10.1029/2005WR004387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernier, P. Y., and R. Swanson, 1993: The influence of opening size on snow evaporation in the forests of the Alberta Foothills. Can. J. For. Res., 23, 239244, doi:10.1139/x93-032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boudreault, L.-É., A. Bechmann, L. Tarvainen, L. Klemedtsson, I. Shendryk, and E. Dellwik, 2015: A LiDAR method of canopy structure retrieval for wind modeling of heterogeneous forests. Agric. For. Meteor., 201, 8697, doi:10.1016/j.agrformet.2014.10.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braud, I., 2000: SiSPAT, a numerical model of water and energy fluxes in the soil–plant–atmosphere continuum. Version 3.0, SiSPAT User’s Manual, 107 pp.

  • Burles, K., and S. Boon, 2011: Snowmelt energy balance in a burned forest plot, Crowsnest Pass, Alberta, Canada. Hydrol. Processes, 25, 30123029, doi:10.1002/hyp.8067.

    • Search Google Scholar
    • Export Citation
  • Coops, N. C., S. N. Gillanders, M. A. Wulder, S. E. Gergel, T. Nelson, and N. R. Goodwin, 2010: Assessing changes in forest fragmentation following infestation using time series Landsat imagery. For. Ecol. Manage., 259, 23552365, doi:10.1016/j.foreco.2010.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denny, M. W., 1993: Air and Water: The Biology and Physics of Life’s Media. Princeton University Press, 360 pp.

  • Derby, R. W., and D. M. Gates, 1966: The temperature of tree trunks—Calculated and observed. Amer. J. Bot., 53, 580587, doi:10.2307/2440008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duffie, J. A., and W. A. Beckman, 1980: Solar Engineering of Thermal Processes. Wiley, 762 pp.

  • Ellis, C., J. Pomeroy, and T. Link, 2013: Modeling increases in snowmelt yield and desynchronization resulting from forest gap‐thinning treatments in a northern mountain headwater basin. Water Resour. Res., 49, 936949, doi:10.1002/wrcr.20089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essery, R., and Coauthors, 2008: Radiative transfer modeling of a coniferous canopy characterized by airborne remote sensing. J. Hydrometeor., 9, 228241, doi:10.1175/2007JHM870.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faria, D. A., J. W. Pomeroy, and R. L. H. Essery, 2000: Effect of covariance between ablation and snow water equivalent on depletion of snow-covered area in a forest. Hydrol. Processes, 14, 26832695, doi:10.1002/1099-1085(20001030)14:15<2683::AID-HYP86>3.0.CO;2-N.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garnier, B. J., and A. Ohmura, 1968: A method for calculating direct shortwave radiation income of slopes. J. Appl. Meteor., 7, 796800, doi:10.1175/1520-0450(1968)007<0796:AMOCTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelfan, A., J. Pomeroy, and L. Kuchment, 2004: Modeling forest cover influences on snow accumulation, sublimation, and melt. J. Hydrometeor., 5, 785803, doi:10.1175/1525-7541(2004)005<0785:MFCIOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giesbrecht, M. A., and M. K. Woo, 2000: Simulation of snowmelt in a subarctic spruce woodland: 2. Open woodland model. Water Resour. Res., 36, 22872295, doi:10.1029/2000WR900093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gouttevin, I., M. Lehning, T. Jonas, D. Gustafsson, and M. Mölder, 2015: A two-layer canopy model with thermal inertia for an improved snowpack energy balance below needleleaf forest (model SNOWPACK, version 3.2. 1, revision 741). Geosci. Model Dev., 8, 23792398, doi:10.5194/gmd-8-2379-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, A. N., and T. A. Spies, 1996: Gap size, within-gap position and canopy structure effects on conifer seedling establishment. J. Ecol., 84, 635645, doi:10.2307/2261327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, R., D. Davidson, and D. Peddle, 2003: Ground and remote estimation of leaf area index in Rocky Mountain forest stands, Kananaskis, Alberta. Can. J. Rem. Sens., 29, 411427, doi:10.5589/m03-012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harpold, A. A., N. P. Molotch, K. N. Musselman, R. C. Bales, P. B. Kirchner, M. Litvak, and P. D. Brooks, 2015: Soil moisture response to snowmelt timing in mixed‐conifer subalpine forests. Hydrol. Processes, 29, 27822798, doi:10.1002/hyp.10400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haughton, N., and Coauthors, 2016: The plumbing of land surface models: Is poor performance a result of methodology or data quality? J. Hydrometeor., 17, 17051723, doi:10.1175/JHM-D-15-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haverd, V., M. Cuntz, R. Leuning, and H. Keith, 2007: Air and biomass heat storage fluxes in a forest canopy: Calculation within a soil vegetation atmosphere transfer model. Agric. For. Meteor., 147, 125139, doi:10.1016/j.agrformet.2007.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., 1996: Review of some basic characteristics of the atmospheric surface layer. Bound.-Layer Meteor., 78, 215246, doi:10.1007/BF00120937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holchendler, J., and W. Laverty, 1974: Configuration factors for radiant heat exchange in cavities bounded at the ends by parallel disks and having conical center bodies. J. Heat Transfer, 96, 254257, doi:10.1115/1.3450177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howell, J. R., R. Siegel, and M. P. Menguc, 2010: Thermal Radiation Heat Transfer. CRC Press, 987 pp.

  • Kain, G., M. C. Barbu, S. Hinterreiter, K. Richter, and A. Petutschnigg, 2013: Using bark as a heat insulation material. BioResources, 8, 37183731, doi:10.15376/biores.8.3.3718-3731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koivusalo, H., and T. Kokkonen, 2002: Snow processes in a forest clearing and in a coniferous forest. J. Hydrol., 262, 145164, doi:10.1016/S0022-1694(02)00031-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawler, R. R., and T. E. Link, 2011: Quantification of incoming all-wave radiation in discontinuous forest canopies with application to snowmelt prediction. Hydrol. Processes, 25, 33223331, doi:10.1002/hyp.8150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levia, D. F., and E. E. Frost, 2003: A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. J. Hydrol., 274, 129, doi:10.1016/S0022-1694(02)00399-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Link, T. E., and D. Marks, 1999: Point simulation of seasonal snow cover dynamics beneath boreal forest canopies. J. Geophys. Res., 104, 27 84127 857, doi:10.1029/1998JD200121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., S. E. Dickerson‐Lange, J. A. Lutz, and N. C. Cristea, 2013: Lower forest density enhances snow retention in regions with warmer winters: A global framework developed from plot‐scale observations and modeling. Water Resour. Res., 49, 63566370, doi:10.1002/wrcr.20504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeser, D., F. Morsdorf, and T. Jonas, 2015: Novel forest structure metrics from airborne LiDAR data for improved snow interception estimation. Agric. For. Meteor., 208, 4049, doi:10.1016/j.agrformet.2015.04.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molotch, N. P., P. D. Brooks, S. P. Burns, M. Litvak, R. K. Monson, J. R. McConnell, and K. Musselman, 2009: Ecohydrological controls on snowmelt partitioning in mixed-conifer sub-alpine forests. Ecohydrology, 2, 129142, doi:10.1002/eco.48.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monson, R. K., and Coauthors, 2005: Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia, 146, 130147, doi:10.1007/s00442-005-0169-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteith, J., and M. Unsworth, 2013: Principles of Environmental Physics: Plants, Animals, and the Atmosphere. 4th ed., Academic Press, 422 pp.

  • Musselman, K. N., N. P. Molotch, and P. D. Brooks, 2008: Effects of vegetation on snow accumulation and ablation in a mid-latitude sub-alpine forest. Hydrol. Processes, 22, 27672776, doi:10.1002/hyp.7050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musselman, K. N., N. P. Molotch, S. A. Margulis, P. Kirchner, and R. C. Bales, 2012: Influence of canopy structure and direct beam solar irradiance on snowmelt rates in a mixed conifer forest. Agric. For. Meteor., 161, 4656, doi:10.1016/j.agrformet.2012.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musselman, K. N., S. A. Margulis, and N. P. Molotch, 2013: Estimation of solar direct beam transmittance of conifer canopies from airborne LiDAR. Remote Sens. Environ., 136, 402415, doi:10.1016/j.rse.2013.05.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musselman, K. N., J. W. Pomeroy, and T. E. Link, 2015: Variability in shortwave irradiance caused by forest gaps: Measurements, modelling, and implications for snow energetics. Agric. For. Meteor., 207, 6982, doi:10.1016/j.agrformet.2015.03.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parviainen, J., and J. Pomeroy, 2000: Multiple-scale modelling of forest snow sublimation: Initial findings. Hydrol. Processes, 14, 26692681, doi:10.1002/1099-1085(20001030)14:15<2669::AID-HYP85>3.0.CO;2-Q.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., and R. Granger, 1997: Sustainability of the western Canadian boreal forest under changing hydrological conditions. I. Snow accumulation and ablation. IAHS Publ., 240, 237242.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., J. Parviainen, N. Hedstrom, and D. M. Gray, 1998: Coupled modelling of forest snow interception and sublimation. Hydrol. Processes, 12, 23172337, doi:10.1002/(SICI)1099-1085(199812)12:15<2317::AID-HYP799>3.0.CO;2-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., T. Davies, H. Jones, P. Marsh, N. Peters, and M. Tranter, 1999: Transformations of snow chemistry in the boreal forest: Accumulation and volatilization. Hydrol. Processes, 13, 22572273, doi:10.1002/(SICI)1099-1085(199910)13:14/15<2257::AID-HYP874>3.0.CO;2-G.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., C. Ellis, A. Rowlands, R. Essery, J. Hardy, T. Link, D. Marks, and J. E. Sicart, 2008: Spatial variability of shortwave irradiance for snowmelt in forests. J. Hydrometeor., 9, 14821490, doi:10.1175/2008JHM867.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., D. Marks, T. Link, C. Ellis, J. Hardy, A. Rowlands, and R. Granger, 2009: The impact of coniferous forest temperature on incoming longwave radiation to melting snow. Hydrol. Processes, 23, 25132525, doi:10.1002/hyp.7325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, Y., X. Chen, K. Zhou, P. Klenk, K. Roth, and L. Sun, 2013: Ground-penetrating radar for monitoring the distribution of near-surface soil water content in the Gurbantünggüt Desert. Environ. Earth Sci., 70, 28832893, doi:10.1007/s12665-013-2528-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riitters, K., J. Wickham, R. O’Neill, B. Jones, and E. Smith, 2000: Global-scale patterns of forest fragmentation. Conserv. Ecol., 4, 3, doi:10.5751/ES-00209-040203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seyednasrollah, B., and M. Kumar, 2014: Net radiation in a snow-covered discontinuous forest gap for a range of gap sizes and topographic configurations. J. Geophys. Res. Atmos., 119, 10 32310 342, doi:10.1002/2014JD021809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seyednasrollah, B., M. Kumar, and T. E. Link, 2013: On the role of vegetation density on net snow cover radiation at the forest floor. J. Geophys. Res. Atmos., 118, 83598374, doi:10.1002/jgrd.50575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sicart, J. E., R. L. H. Essery, J. W. Pomeroy, J. Hardy, T. Link, and D. Marks, 2004: A sensitivity study of daytime net radiation during snowmelt to forest canopy and atmospheric conditions. J. Hydrometeor., 5, 774784, doi:10.1175/1525-7541(2004)005<0774:ASSODN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturm, M., 1992: Snow distribution and heat flow in the taiga. Arct. Alp. Res., 24, 145152, doi:10.2307/1551534.

  • Trujillo, E., N. P. Molotch, M. L. Goulden, A. E. Kelly, and R. C. Bales, 2012: Elevation-dependent influence of snow accumulation on forest greening. Nat. Geosci., 5, 705709, doi:10.1038/ngeo1571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vidale, P. L., D. Lüthi, C. Frei, S. I. Seneviratne, and C. Schär, 2003: Predictability and uncertainty in a regional climate model. J. Geophys. Res., 108, 4586, doi:10.1029/2002JD002810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, C., N. Rutter, F. Zahner, and T. Jonas, 2016: Modeling subcanopy incoming longwave radiation to seasonal snow using air and tree trunk temperatures. J. Geophys. Res. Atmos., 121, 12201235, doi:10.1002/2015JD024099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woo, M. K., and M. A. Giesbrecht, 2000: Simulation of snowmelt in a subarctic spruce woodland: 1. Tree model. Water Resour. Res., 36, 22752285, doi:10.1029/2000WR900094.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1372 629 66
PDF Downloads 568 91 13