• AghaKouchak, A., A. Bárdossy, and E. Habib, 2010: Copula‐based uncertainty modelling: Application to multisensor precipitation estimates. Hydrol. Processes, 24, 21112124.

    • Search Google Scholar
    • Export Citation
  • Al-Kandari, N. M., and I. T. Jolliffe, 2001: Variable selection and interpretation of covariance principal components. Commun. Stat. Simul. Comput., 30, 339354, doi:10.1081/SAC-100002371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Al-Kandari, N. M., and I. T. Jolliffe, 2005: Variable selection and interpretation in correlation principal components. Environmetrics, 16, 659672, doi:10.1002/env.728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Al-Zahrani, M., and T. Husain, 1998: An algorithm for designing a precipitation network in the south-western region of Saudi Arabia. J. Hydrol., 205, 205216, doi:10.1016/S0022-1694(97)00153-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barancourt, C., J. Creutin, and J. Rivoirard, 1992: A method for delineating and estimating rainfall fields. Water Resour. Res., 28, 11331144, doi:10.1029/91WR02896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bastin, G., B. Lorent, C. Duqué, and M. Gevers, 1984: Optimal estimation of the average areal rainfall and optimal selection of rain gauge locations. Water Resour. Res., 20, 463470, doi:10.1029/WR020i004p00463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogárdi, I., A. Bárdossy, and L. Duckstein, 1985: Multicriterion network design using geostatistics. Water Resour. Res., 21, 199208, doi:10.1029/WR021i002p00199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borga, M., F. Tonelli, R. J. Moore, and H. Andrieu, 2002: Long‐term assessment of bias adjustment in radar rainfall estimation. Water Resour. Res., 38, 1226, doi:10.1029/2001WR000555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, A. A., C. Peters-Lidard, B. R. Nelson, J. A. Smith, and C. B. Young, 2002: Raingage network design using NEXRAD precipitation estimates. J. Amer. Water Resour. Assoc., 38, 13931407, doi:10.1111/j.1752-1688.2002.tb04354.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bras, R. L., and I. Rodríguez-Iturbe, 1985: Random Functions and Hydrology. Addison-Wesley, 704 pp.

  • Bringi, V., M. Rico-Ramirez, and M. Thurai, 2011: Rainfall estimation with an operational polarimetric C-band radar in the United Kingdom: Comparison with a gauge network and error analysis. J. Hydrometeor., 12, 935954, doi:10.1175/JHM-D-10-05013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., and W. F. Krajewski, 1999: On the estimation of radar rainfall error variance. Adv. Water Resour., 22, 585595, doi:10.1016/S0309-1708(98)00043-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., W. F. Krajewski, and G. Villarini, 2007: Product-error-driven uncertainty model for probabilistic quantitative precipitation estimation with NEXRAD data. J. Hydrometeor., 8, 13251347, doi:10.1175/2007JHM814.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cluckie, I., R. Griffith, A. Lane, and K. Tilford, 2000: Radar hydrometeorology using a vertically pointing radar. Hydrol. Earth Syst. Sci., 4, 565580, doi:10.5194/hess-4-565-2000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collier, C., 1986: Accuracy of rainfall estimates by radar, part I: Calibration by telemetering raingauges. J. Hydrol., 83, 207223, doi:10.1016/0022-1694(86)90152-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cormack, R. M., 1971: A review of classification. J. Roy. Stat. Soc., 134A, 321367, doi:10.2307/2344237.

  • Dai, Q., and D. Han, 2014: Exploration of discrepancy between radar and gauge rainfall estimates driven by wind fields. Water Resour. Res., 50, 85718588, doi:10.1002/2014WR015794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Q., D. Han, M. A. Rico-Ramirez, and T. Islam, 2013: The impact of raindrop drift in a three-dimensional wind field on a radar–gauge rainfall comparison. Int. J. Remote Sens., 34, 77397760, doi:10.1080/01431161.2013.826838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Q., D. Han, M. A. Rico-Ramirez, and P. K. Srivastava, 2014: Multivariate distributed ensemble generator: A new scheme for ensemble radar precipitation estimation over temperate maritime climate. J. Hydrol., 511, 1727, doi:10.1016/j.jhydrol.2014.01.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Q., M. A. Rico‐Ramirez, D. Han, T. Islam, and S. Liguori, 2015: Probabilistic radar rainfall nowcasts using empirical and theoretical uncertainty models. Hydrol. Processes, 29, 6679, doi:10.1002/hyp.10133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emmanuel, I., H. Andrieu, and P. Tabary, 2012: Evaluation of the new French operational weather radar product for the field of urban hydrology. Atmos. Res., 103, 2032, doi:10.1016/j.atmosres.2011.06.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germann, U., M. Berenguer Ferrer, D. Sempere Torres, and M. Zappa, 2009: REAL—Ensemble radar precipitation estimation for hydrology in a mountainous region. Quart. J. Roy. Meteor. Soc., 135, 445456, doi:10.1002/qj.375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habib, E., G. J. Ciach, and W. F. Krajewski, 2004: A method for filtering out raingauge representativeness errors from the verification distributions of radar and raingauge rainfall. Adv. Water Resour., 27, 967980, doi:10.1016/j.advwatres.2004.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., 1986: Principal Component Analysis. Springer, 271 pp.

    • Crossref
    • Export Citation
  • Kirstetter, P.-E., G. Delrieu, B. Boudevillain, and C. Obled, 2010: Toward an error model for radar quantitative precipitation estimation in the Cévennes–Vivarais region, France. J. Hydrol., 394, 2841, doi:10.1016/j.jhydrol.2010.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., V. Lakshmi, K. P. Georgakakos, and S. C. Jain, 1991: A Monte Carlo study of rainfall sampling effect on a distributed catchment model. Water Resour. Res., 27, 119128, doi:10.1029/90WR01977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krstanovic, P. F., and V. P. Singh, 1992: Evaluation of rainfall networks using entropy: I. Theoretical development. Water Resour. Manage., 6, 279293, doi:10.1007/BF00872281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, C., and H. Kunstmann, 2012: The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeor., 13, 13971420, doi:10.1175/JHM-D-11-088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsui, T., and Coauthors, 2013: GPM satellite simulator over ground validation sites. Bull. Amer. Meteor. Soc., 94, 16531660, doi:10.1175/BAMS-D-12-00160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, A. K., and P. Coulibaly, 2009: Developments in hydrometric network design: A review. Rev. Geophys., 47, RG2001, doi:10.1029/2007RG000243.

  • Moore, R. J., D. A. Jones, D. R. Cox, and V. S. Isham, 2000: Design of the HYREX raingauge network. Hydrol. Earth Syst. Sci., 4, 521530, doi:10.5194/hess-4-521-2000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrissey, M. L., J. A. Maliekal, J. S. Greene, and J. Wang, 1995: The uncertainty of simple spatial averages using rain gauge networks. Water Resour. Res., 31, 20112017, doi:10.1029/95WR01232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moss, M. E., and G. D. Tasker, 1991: An intercomparison of hydrological network-design technologies. Hydrol. Sci. J., 36, 209221, doi:10.1080/02626669109492504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overeem, A., H. Leijnse, and R. Uijlenhoet, 2013: Country-wide rainfall maps from cellular communication networks. Proc. Natl. Acad. Sci. USA, 110, 27412745, doi:10.1073/pnas.1217961110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pardo-Igúzquiza, E., 1998: Optimal selection of number and location of rainfall gauges for areal rainfall estimation using geostatistics and simulated annealing. J. Hydrol., 210, 206220, doi:10.1016/S0022-1694(98)00188-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rico-Ramirez, M., and I. Cluckie, 2007: Bright‐band detection from radar vertical reflectivity profiles. Int. J. Remote Sens., 28, 40134025, doi:10.1080/01431160601047797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Iturbe, I., and J. M. Mejía, 1974: The design of rainfall networks in time and space. Water Resour. Res., 10, 713728, doi:10.1029/WR010i004p00713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandford, C., 2015: Correcting for wind drift in high resolution radar rainfall products: A feasibility study. J. Hydrol., 531, 284295, doi:10.1016/j.jhydrol.2015.03.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shih, S. F., 1982: Rainfall variation analysis and optimization of gaging systems. Water Resour. Res., 18, 12691277, doi:10.1029/WR018i004p01269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., R. F. Adler, and G. R. North, 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278295, doi:10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., M. L. Baeck, G. Villarini, C. Welty, A. J. Miller, and W. F. Krajewski, 2012: Analyses of a long‐term, high‐resolution radar rainfall data set for the Baltimore metropolitan region. Water Resour. Res., 48, W04504, doi:10.1029/2011WR010641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stedinger, J. R., and G. D. Tasker, 1985: Regional hydrologic analysis: 1. Ordinary, weighted, and generalized least squares compared. Water Resour. Res., 21, 14211432, doi:10.1029/WR021i009p01421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tasker, G. D., and M. E. Moss, 1979: Analysis of Arizona Flood Data Network for regional information. Water Resour. Res., 15, 17911796, doi:10.1029/WR015i006p01791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorndahl, S., J. E. Nielsen, and M. R. Rasmussen, 2014: Bias adjustment and advection interpolation of long-term high resolution radar rainfall series. J. Hydrol., 508, 214226, doi:10.1016/j.jhydrol.2013.10.056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsintikidis, D., K. P. Georgakakos, J. A. Sperfslage, D. E. Smith, and T. M. Carpenter, 2011: Precipitation uncertainty and raingauge network design within Folsom Lake watershed. J. Hydrol. Eng., 7, 175184, doi:10.1061/(ASCE)1084-0699(2002)7:2(175).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and W. F. Krajewski, 2010: Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv. Geophys., 31, 107129, doi:10.1007/s10712-009-9079-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., P. V. Mandapaka, W. F. Krajewski, and R. J. Moore, 2008: Rainfall and sampling uncertainties: A rain gauge perspective.J. Geophys. Res., 113, D11102, doi:10.1029/2007JD009214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volkmann, T. H., S. W. Lyon, H. V. Gupta, and P. A. Troch, 2010: Multicriteria design of rain gauge networks for flash flood prediction in semiarid catchments with complex terrain. Water Resour. Res., 46, W11554, doi:10.1029/2010WR009145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, D., 2012: The tricky business of counting rain. New York Times, 2 July. [Available online at http://green.blogs.nytimes.com/2012/07/02/do-not-publish-the-tricky-business-of-counting-rain/#more-143581.]

  • Wood, S., D. Jones, and R. Moore, 2000: Accuracy of rainfall measurement for scales of hydrological interest. Hydrol. Earth Syst. Sci., 4, 531543, doi:10.5194/hess-4-531-2000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, D. B., J. A. Smith, G. Villarini, and M. L. Baeck, 2013: Estimating the frequency of extreme rainfall using weather radar and stochastic storm transposition. J. Hydrol., 488, 150165, doi:10.1016/j.jhydrol.2013.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., and D. Burn, 1994: An entropy approach to data collection network design. J. Hydrol., 157, 307324, doi:10.1016/0022-1694(94)90111-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, doi:10.1175/BAMS-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 33 33 32
PDF Downloads 25 25 25

A Scheme for Rain Gauge Network Design Based on Remotely Sensed Rainfall Measurements

View More View Less
  • 1 Key Laboratory of Virtual Geographic Environment of Ministry of Education, Nanjing Normal University, Nanjing, China, and Water and Environmental Management Research Centre, Department of Civil Engineering, University of Bristol, Bristol, United Kingdom, and Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
  • | 2 Hydro-Environmental Research Center, Cardiff University, Cardiff, United Kingdom
  • | 3 Water and Environmental Management Research Centre, Department of Civil Engineering, University of Bristol, Bristol, United Kingdom
  • | 4 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 5 Water and Environmental Management Research Centre, Department of Civil Engineering, University of Bristol, Bristol, United Kingdom
Restricted access

Abstract

A remarkable decline in the number of rain gauges is being faced in many areas of the world, as a compromise to the expensive cost of operating and maintaining rain gauges. The question of how to effectively deploy new or remove current rain gauges in order to create optimal rainfall information is becoming more and more important. On the other hand, larger-scaled, remotely sensed rainfall measurements, although poorer quality compared with traditional rain gauge rainfall measurements, provide an insight into the local storm characteristics, which are sought by traditional methods for designing a rain gauge network. Based on these facts, this study proposes a new methodology for rain gauge network design using remotely sensed rainfall datasets that aims to explore how many gauges are essential and where they should be placed. Principal component analysis (PCA) is used to analyze the redundancy of the radar grid network and to determine the number of rain gauges while the potential locations are determined by cluster analysis (CA) selection. The proposed methodology has been performed on 373 different storm events measured by a weather radar grid network and compared against an existing dense rain gauge network in southwestern England. Because of the simple structure, the proposed scheme could be easily implemented in other study areas. This study provides a new insight into rain gauge network design that is also a preliminary attempt to use remotely sensed data to solve the traditional rain gauge problems.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Qiang Dai, q.dai@njnu.edu.cn; dqgis@hotmail.com

Abstract

A remarkable decline in the number of rain gauges is being faced in many areas of the world, as a compromise to the expensive cost of operating and maintaining rain gauges. The question of how to effectively deploy new or remove current rain gauges in order to create optimal rainfall information is becoming more and more important. On the other hand, larger-scaled, remotely sensed rainfall measurements, although poorer quality compared with traditional rain gauge rainfall measurements, provide an insight into the local storm characteristics, which are sought by traditional methods for designing a rain gauge network. Based on these facts, this study proposes a new methodology for rain gauge network design using remotely sensed rainfall datasets that aims to explore how many gauges are essential and where they should be placed. Principal component analysis (PCA) is used to analyze the redundancy of the radar grid network and to determine the number of rain gauges while the potential locations are determined by cluster analysis (CA) selection. The proposed methodology has been performed on 373 different storm events measured by a weather radar grid network and compared against an existing dense rain gauge network in southwestern England. Because of the simple structure, the proposed scheme could be easily implemented in other study areas. This study provides a new insight into rain gauge network design that is also a preliminary attempt to use remotely sensed data to solve the traditional rain gauge problems.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Qiang Dai, q.dai@njnu.edu.cn; dqgis@hotmail.com
Save