• Atallah, E. H., and L. F. Bosart, 2003: The extratropical transition and precipitation distribution of Hurricane Floyd (1999). Mon. Wea. Rev., 131, 10631081, doi:10.1175/1520-0493(2003)131<1063:TETAPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atallah, E. H., L. F. Bosart, and A. R. Aiyyer, 2007: Precipitation distribution associated with landfalling tropical cyclones over the eastern United States. Mon. Wea. Rev., 135, 21852206, doi:10.1175/MWR3382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, X., and Coauthors, 2015: Diagnostics for an extreme rain event near Shanghai during the landfall of Typhoon Fitow (2013). Mon. Wea. Rev., 143, 33773405, doi:10.1175/MWR-D-14-00241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., R. G. Semonin, and F. A. Huff, 1976: A hypothesis for urban rainfall anomalies. J. Appl. Meteor., 15, 544560, doi:10.1175/1520-0450(1976)015<0544:AHFURA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. A. Knaff, and F. D. Marks, 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, doi:10.1175/MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and F. Hossain, 2016: Revisiting extreme storms of the past 100 years for future safety of large water management infrastructures. Earth’s Future, 4, 306322, doi:10.1002/2016EF000368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2003: Numerical simulations of the extratropical transition of Floyd (1999): Structural evolution and responsible mechanisms for the heavy rainfall over the northeast United States. Mon. Wea. Rev., 131, 29052926, doi:10.1175/1520-0493(2003)131<2905:NSOTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, doi:10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376, doi:10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, J. E., 1987: A comparison of the largest rainfall–runoff floods in the United States with those of the People’s Republic of China and the world. J. Hydrol., 96, 101115, doi:10.1016/0022-1694(87)90146-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Q., 1998: The River Dragon Has Come! The Three Gorges Dam and the Fate of China’s Yangtze River and Its People. J. G. Thibodeau and P. B. Williams, Eds., Routledge, 270 pp.

  • Dalrymple, T., 1960: Flood-frequency analyses. Manual of Hydrology: Part 3. Flood-flow techniques, USGS Water-Supply Paper 1543-A, 80 pp. [Available online at https://pubs.usgs.gov/wsp/1543a/report.pdf.]

  • Davis, C. A., and Coauthors, 2008a: Prediction of landfalling hurricanes with the advanced hurricane WRF Model. Mon. Wea. Rev., 136, 19902005, doi:10.1175/2007MWR2085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., S. C. Jones, and M. Riemer, 2008b: Hurricane vortex dynamics during Atlantic extratropical transition. J. Atmos. Sci., 65, 714736, doi:10.1175/2007JAS2488.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., 2015: On the study of the unprecedented heavy rainfall in Henan Province during 4–8 August 1975: Review and assessment. Acta Meteor. Sin., 73, 411424, doi:10.11676/qxxb2015.067.

    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., and J. Y. Zhang, 2009: Torrential Rains and Flashing Floods. Meteorological Press, 290 pp.

  • Evans, J. L., and R. E. Hart, 2003: Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. Mon. Wea. Rev., 131, 909925, doi:10.1175/1520-0493(2003)131<0909:OIOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fish, E., 2013: The forgotten legacy of the Banqiao Dam collapse. Economic Observer, 8 February. [Available online at http://www.eeo.com.cn/ens/2013/0208/240078.shtml.]

  • Frank, W. M., W. M. Frank, E. A. Ritchie, and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061, doi:10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, A., 2005: Problems of design floods for Shimantan and Banqiao reservoir. China Water Resour., 16, 3941.

  • Fu, D., and X. Guo, 2012: A cloud-resolving simulation study on the merging processes and effects of topography and environmental winds. J. Atmos. Sci., 69, 12321249, doi:10.1175/JAS-D-11-049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, S., and X. Li, 2008: Precipitation efficiency. Cloud-Resolving Modeling of Convective Processes. Springer, 137–146.

    • Crossref
    • Export Citation
  • Gao, S., Z. Meng, F. Zhang, and L. F. Bosart, 2009: Observational analysis of heavy rainfall mechanisms associated with severe Tropical Storm Bilis (2006) after its landfall. Mon. Wea. Rev., 137, 18811897, doi:10.1175/2008MWR2669.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., C. Perrin, G. Blöschl, A. Montanari, R. Kumar, M. Clark, and V. Andréassian, 2014: Large-sample hydrology: A need to balance depth with breadth. Hydrol. Earth Syst. Sci., 18, 463477, doi:10.5194/hess-18-463-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamada, A., Y. N. Takayabu, C. Liu, and E. J. Zipser, 2015: Weak linkage between the heaviest rainfall and tallest storms. Nat. Commun., 6, 6213, doi:10.1038/ncomms7213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585616, doi:10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, M., and C. Luo, 1992: Historical Floods of China. China Bookstore Publishing House, 727 pp.

  • Huang, H. L., M. J. Yang, and C. H. Sui, 2014: Water budget and precipitation efficiency of Typhoon Morakot (2009). J. Atmos. Sci., 71, 112129, doi:10.1175/JAS-D-13-053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jankov, I., W. A. Gallus, M. Segal, B. Shaw, and S. E. Koch, 2005: The impact of different WRF Model physical parameterizations and their interactions on warm season MCS rainfall. Wea. Forecasting, 20, 10481060, doi:10.1175/WAF888.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092, doi:10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., B. Lynn, and J. Shpund, 2016: High resolution WRF simulations of Hurricane Irene: Sensitivity to aerosols and choice of microphysical schemes. Atmos. Res., 167, 129145, doi:10.1016/j.atmosres.2015.07.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2013: Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Climate, 26, 65916617, doi:10.1175/JCLI-D-12-00539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lall, U., and L. R. Beard, 1982: Estimation of Pearson type 3 moments. Water Resour. Res., 18, 15631569, doi:10.1029/WR018i005p01563.

  • Lavers, D. A., and G. Villarini, 2013: The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett., 40, 32593264, doi:10.1002/grl.50636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C. Q., G. A. Wang, and R. R. Li, 2013: Maximum observed floods in China. Hydrol. Sci. J., 58, 728735, doi:10.1080/02626667.2013.772299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., W. Li, and J. Jin, 2014: Improvements in WRF simulation skills of southeastern United States summer rainfall: Physical parameterization and horizontal resolution. Climate Dyn., 43, 20772091, doi:10.1007/s00382-013-2031-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, M. F., and J. A. Smith, 2016: Extreme rainfall from landfalling tropical cyclones in the eastern United States: Hurricane Irene (2011). J. Hydrometeor., 17, 28832904, doi:10.1175/JHM-D-16-0072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, M., U. Lall, A. Schwartz, and H. Kwon, 2013: Precipitation predictability associated with tropical moisture exports and circulation patterns for a major flood in France in 1995. Water Resour. Res., 49, 63816392, doi:10.1002/wrcr.20512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, C., and G. Shen, 1987: Catalogue of maximum floods and its geographic attributes. J. Chinese Hydrol., 5, 510.

  • Myers, V. A., 1969: The estimation of extreme precipitation as the basis for design floods: Resume of practice in the United States, IAHS Publ., 84–85, 84101. [Available online at http://iahs.info/uploads/dms/084011.pdf.]

    • Search Google Scholar
    • Export Citation
  • NOAA, 2007: The worst natural disasters by death toll. Accessed November 2015. [Available online at http://docs.lib.noaa.gov/noaa_documents/NOAA_related_docs/death_toll_natural_disasters.pdf.]

  • Ping, F., Z. Luo, X. Tang, and L. Hu, 2014: A simulation of the merger of convective clouds in the torrential rainfalls associated with the Meiyu front. Meteor. Atmos. Phys., 123, 5165, doi:10.1007/s00703-013-0294-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreck, C., and Coauthors, Eds., 2013: The Climate Data Guide: IBTrACS: Tropical cyclone best track data. NCAR/UCAR, accessed November 2015. [Available online at https://climatedataguide.ucar.edu/climate-data/ibtracs-tropical-cyclone-best-track-data.]

  • Simmonds, I., D. Bi, and P. Hope, 1999: Atmospheric water vapor flux and its association with rainfall over China in summer. J. Climate, 12, 13531367, doi:10.1175/1520-0442(1999)012<1353:AWVFAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, J. A., and M. L. Baeck, 2015: “Prophetic vision, vivid imagination”: The 1927 Mississippi River flood. Water Resour. Res., 51, 99649994, doi:10.1002/2015WR017927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Special Research Team for the “75.8” heavy rainstorm, 1977a: Preliminary analysis of cause of the “75.8” heavy rainstorm Part I. Meteor. Monogr., 3, 35.

    • Search Google Scholar
    • Export Citation
  • Special Research Team for the “75.8” heavy rainstorm, 1977b: Preliminary analysis of causes of the “75.8” heavy rainstorm Part II. Meteor. Monogr., 3, 68.

    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and H. Wernli, 2015: The LAGRANTO Lagrangian analysis tool—Version 2.0. Geosci. Model Dev., 8, 25692586, doi:10.5194/gmd-8-2569-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sui, C. H., X. Li, and M. J. Yang, 2007: On the definition of precipitation efficiency. J. Atmos. Sci., 64, 45064513, doi:10.1175/2007JAS2332.1.

  • Teegavarapu, R. S. V., 2013: Floods in a Changing Climate: Extreme Precipitation. Cambridge University Press, 285 pp.

    • Crossref
    • Export Citation
  • Trenberth, K. E., 1978: On the interpretation of the diagnostic quasi-geostrophic omega equation. Mon. Wea. Rev., 106, 131137, doi:10.1175/1520-0493(1978)106<0131:OTIOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and J. A. Smith, 2010: Flood peak distributions for the eastern United States. Water Resour. Res., 46, W06504, doi:10.1029/2009WR008395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., 2006: The main cause and lesson of “August 1975” dam-breaking floods in the Huaihe River. Sci. Technol. Rev., 24, 7277.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2005: Recognition of hydrological rules from the “75.8” flood. China Water Resour., 16, 42–44.

  • Wu, L., B. Wang, and S. Geng, 2005: Growing typhoon influence on East Asia. Geophys. Res. Lett., 32, L18703, doi:10.1029/2005GL022937.

  • Xie, B., and F. Zhang, 2012: Impacts of typhoon track and island topography on the heavy rainfalls in Taiwan associated with Morakot (2009). Mon. Wea. Rev., 140, 33793394, doi:10.1175/MWR-D-11-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., 2005: “75.8” flood and main lessons. Zhihuai, 8, 13.

  • Yang, L., G. Villarini, J. A. Smith, F. Tian, and H. Hu, 2013: Changes in seasonal maximum daily precipitation in China over the period 1961–2006. Int. J. Climatol., 33, 16461657, doi:10.1002/joc.3539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., J. A. Smith, M. L. Baeck, D. Niyogi, and F. Tian, 2016: Structure and evolution of flash flood producing storms in a small urban watershed. J. Geophys. Res. Atmos., 121, 31393152, doi:10.1002/2015JD024478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S. Q., M. Zupanski, A. Y. Hou, X. Lin, and S. H. Cheung, 2013: Assimilation of precipitation-affected radiances in a cloud-resolving WRF ensemble data assimilation system. Mon. Wea. Rev., 141, 754772, doi:10.1175/MWR-D-12-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T.-J., and R.-C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, doi:10.1029/2004JD005413.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6525 3911 3
PDF Downloads 4460 2633 2

Typhoon Nina and the August 1975 Flood over Central China

View More View Less
  • 1 Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
  • | 2 Department of Hydraulic Engineering, Tsinghua University, Beijing, China
Restricted access

Abstract

The August 1975 flood in central China was one of the most destructive floods in history. Catastrophic flooding was the product of extreme rainfall from Typhoon Nina over a 3-day period from 5 to 7 August 1975. Despite the prominence of the August 1975 flood, relatively little is known about the evolution of rainfall responsible for the flood. Details of extreme rainfall and flooding for the August 1975 event in central China are examined based on empirical analyses of rainfall and streamflow measurements and based on downscaling simulations using the Weather Research and Forecasting (WRF) Model, driven by Twentieth Century Reanalysis (20CR) fields. Key hydrometeorological features of the flood event are placed in a climatological context through hydroclimatological analyses of 20CR fields. Results point to the complex evolution of rainfall over the 3-day period with distinctive periods of storm structure controlling rainfall distribution in the flood region. Blocking plays a central role in controlling anomalous storm motion of Typhoon Nina and extreme duration of heavy rainfall. Interaction of Typhoon Nina with a second tropical depression played a central role in creating a zone of anomalously large water vapor transport, a central feature of heavy rainfall during the critical storm period on 7 August. Analyses based on the quasigeostrophic omega equation identified the predominant role of warm air advection for synoptic-scale vertical motion. Back-trajectory analyses using a Lagrangian parcel tracking algorithm are used to assess and quantify water vapor transport for the flood. The analytical framework developed in this study is designed to improve hydrometeorological approaches for flood-control design.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Long Yang, longyang@princeton.edu

Abstract

The August 1975 flood in central China was one of the most destructive floods in history. Catastrophic flooding was the product of extreme rainfall from Typhoon Nina over a 3-day period from 5 to 7 August 1975. Despite the prominence of the August 1975 flood, relatively little is known about the evolution of rainfall responsible for the flood. Details of extreme rainfall and flooding for the August 1975 event in central China are examined based on empirical analyses of rainfall and streamflow measurements and based on downscaling simulations using the Weather Research and Forecasting (WRF) Model, driven by Twentieth Century Reanalysis (20CR) fields. Key hydrometeorological features of the flood event are placed in a climatological context through hydroclimatological analyses of 20CR fields. Results point to the complex evolution of rainfall over the 3-day period with distinctive periods of storm structure controlling rainfall distribution in the flood region. Blocking plays a central role in controlling anomalous storm motion of Typhoon Nina and extreme duration of heavy rainfall. Interaction of Typhoon Nina with a second tropical depression played a central role in creating a zone of anomalously large water vapor transport, a central feature of heavy rainfall during the critical storm period on 7 August. Analyses based on the quasigeostrophic omega equation identified the predominant role of warm air advection for synoptic-scale vertical motion. Back-trajectory analyses using a Lagrangian parcel tracking algorithm are used to assess and quantify water vapor transport for the flood. The analytical framework developed in this study is designed to improve hydrometeorological approaches for flood-control design.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Long Yang, longyang@princeton.edu
Save