• Bolvin, D. T., and Huffman G. J. , 2015: Transition of 3B42/3B43 research product from monthly to climatological calibration/adjustment. NASA TRMM Doc., 11 pp. [Available online at https://pmm.nasa.gov/sites/default/files/document_files/3B42_3B43_TMPA_restart.pdf.]

  • Chen, S., and Coauthors, 2013a: Evaluation and uncertainty estimation of NOAA/NSSL next-generation National Mosaic Quantitative Precipitation Estimation Product (Q2) over the continental United States. J. Hydrometeor., 14, 13081322, doi:10.1175/JHM-D-12-0150.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2013b: Similarity and difference of the two successive V6 and V7 TRMM Multisatellite Precipitation Analysis performance over China. J. Geophys. Res. Atmos., 118, 13 06013 074, doi:10.1002/2013JD019964.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., Janowiak J. E. , and Kidd C. , 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764, doi:10.1175/BAMS-88-1-47.

    • Search Google Scholar
    • Export Citation
  • Falck, A. S., Maggioni V. , Tomasella J. , Vila D. A. , and Diniz F. L. , 2015: Propagation of satellite precipitation uncertainties through a distributed hydrologic model: A case study in the Tocantins–Araguaia basin in Brazil. J. Hydrol., 527, 943957, doi:10.1016/j.jhydrol.2015.05.042.

    • Search Google Scholar
    • Export Citation
  • Gebregiorgis, A., Kirstetter P.-E. , Hong Y. , Carr N. , Gourley J. J. , and Zheng Y. , 2017: Understanding overland multisensor satellite precipitation error in TRMM TMPA-RT products. J. Hydrometeor., doi:10.1175/JHM-D-15-0207.1, in press.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., Meng J. , Rodell M. , and Houser P. , 2005: Analysis of multiple precipitation products and preliminary assessment of their impact on Global Land Data Assimilation System land surface states. J. Hydrometeor., 6, 573598, doi:10.1175/JHM437.1.

    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., Hong Y. , Flamig Z. L. , Li L. , and Wang J. , 2010: Intercomparison of rainfall estimates from radar, satellite, gauge, and combinations for a season of record rainfall. J. Appl. Meteor. Climatol., 49, 437452, doi:10.1175/2009JAMC2302.1.

    • Search Google Scholar
    • Export Citation
  • Guo, H., Chen S. , Bao A. , Behrangi A. , Hong Y. , Ndayisaba F. , Hu J. , and Stepanian P. M. , 2016: Early assessment of Integrated Multi-Satellite Retrievals for Global Precipitation Measurement over China. Atmos. Res., 176177, 121133, doi:10.1016/j.atmosres.2016.02.020.

    • Search Google Scholar
    • Export Citation
  • Habib, E., Henschke A. , and Adler R. F. , 2009: Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana, USA. Atmos. Res., 94, 373388, doi:10.1016/j.atmosres.2009.06.015.

    • Search Google Scholar
    • Export Citation
  • Habib, E., Haile A. T. , Tian Y. , and Joyce R. J. , 2012: Evaluation of the high-resolution CMORPH satellite rainfall product using dense rain gauge observations and radar-based estimates. J. Hydrometeor., 13, 17841798, doi:10.1175/JHM-D-12-017.1.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., Hsu K.-L. , Sorooshian S. , and Gao X. , 2004: Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. J. Appl. Meteor., 43, 18341853, doi:10.1175/JAM2173.1.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., and Huffman G. J. , 2008: Investigating error metrics for satellite rainfall data at hydrologically relevant scales. J. Hydrometeor., 9, 563575, doi:10.1175/2007JHM925.1.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Bolvin D. T. , Braithwaite D. , Hsu K. , Joyce R. , Kidd C. , Nelkin E. J. , and Xie P. , 2015: NASA Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 4.5, 30 pp. [Available online at http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.]

  • Joyce, R. J., and Xie P. , 2011: Kalman filter–based CMORPH. J. Hydrometeor., 12, 15471563, doi:10.1175/JHM-D-11-022.1.

  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., and Coauthors, 2012: Toward a framework for systematic error modeling of spaceborne precipitation radar with NOAA/NSSL ground radar–based National Mosaic QPE. J. Hydrometeor., 13, 12851300, doi:10.1175/JHM-D-11-0139.1.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., Hong Y. , Gourley J. J. , Cao Q. , Schwaller M. , and Petersen W. , 2014: Research framework to bridge from the Global Precipitation Measurement Mission Core satellite to the constellation sensors using ground-radar-based National Mosaic QPE. Remote Sensing of the Terrestrial Water Cycle, Geophys. Monogr., Vol. 206, Amer. Geophys. Union, 61–79, doi:10.1002/9781118872086.ch4.

  • Kirstetter, P.-E., Gourley J. J. , Hong Y. , Zhang J. , Moazamigoodarzi S. , Langston C. , and Arthur A. , 2015a: Probabilistic precipitation rate estimates with ground-based radar networks. Water Resour. Res., 51, 14221442, doi:10.1002/2014WR015672.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., Hong Y. , Gourley J. J. , Schwaller M. , Petersen W. , and Cao Q. , 2015b: Impact of sub-pixel rainfall variability on spaceborne precipitation estimation: Evaluating the TRMM 2A25 product: Impact of sub-pixel rainfall variability on TRMM 2A25. Quart. J. Roy. Meteor. Soc., 141, 953966, doi:10.1002/qj.2416.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., Ushio T. , Shige S. , Kida S. , Kachi M. , and Okamoto K. , 2009: Verification of high-resolution satellite-based rainfall estimates around Japan using a gauge-calibrated ground-radar dataset. J. Meteor. Soc. Japan, 87A, 203222, doi:10.2151/jmsj.87A.203.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2016: Comparison of Integrated Multisatellite Retrievals for GPM (IMERG) and TRMM Multisatellite Precipitation Analysis (TMPA) monthly precipitation products: Initial results. J. Hydrometeor., 17, 777790, doi:10.1175/JHM-D-15-0068.1.

    • Search Google Scholar
    • Export Citation
  • Maggioni, V., Sapiano M. R. P. , Adler R. F. , Tian Y. , and Huffman G. J. , 2014: An error model for uncertainty quantification in high-time-resolution precipitation products. J. Hydrometeor., 15, 12741292, doi:10.1175/JHM-D-13-0112.1.

    • Search Google Scholar
    • Export Citation
  • Mei, Y., Anagnostou E. N. , Nikolopoulos E. I. , and Borga M. , 2014: Error analysis of satellite precipitation products in mountainous basins. J. Hydrometeor., 15, 17781793, doi:10.1175/JHM-D-13-0194.1.

    • Search Google Scholar
    • Export Citation
  • Roca, R., Chambon P. , Jobard I. , Kirstetter P.-E. , Gosset M. , and Bergès J. C. , 2010: Comparing satellite and surface rainfall products over West Africa at meteorologically relevant scales during the AMMA campaign using error estimates. J. Appl. Meteor. Climatol., 49, 715731, doi:10.1175/2009JAMC2318.1.

    • Search Google Scholar
    • Export Citation
  • Sarachi, S., Hsu K.-l. , and Sorooshian S. , 2015: A statistical model for the uncertainty analysis of satellite precipitation products. J. Hydrometeor., 16, 21012117, doi:10.1175/JHM-D-15-0028.1.

    • Search Google Scholar
    • Export Citation
  • Stampoulis, D., and Anagnostou E. N. , 2012: Evaluation of global satellite rainfall products over continental Europe. J. Hydrometeor., 13, 588603, doi:10.1175/JHM-D-11-086.1.

    • Search Google Scholar
    • Export Citation
  • Tan, J., Petersen W. A. , and Tokay A. , 2016: A novel approach to identify sources of errors in IMERG for GPM ground validation. J. Hydrometeor., 17, 24772491, doi:10.1175/JHM-D-16-0079.1.

    • Search Google Scholar
    • Export Citation
  • Tang, G., Ma Y. , Long D. , Zhong L. , and Hong Y. , 2016a: Evaluation of GPM day-1 IMERG and TMPA version-7 legacy products over mainland China at multiple spatiotemporal scales. J. Hydrol., 533, 152167, doi:10.1016/j.jhydrol.2015.12.008.

    • Search Google Scholar
    • Export Citation
  • Tang, G., Zeng Z. , Long D. , Guo X. , Yong B. , Zhang W. , and Hong Y. , 2016b: Statistical and hydrological comparisons between TRMM and GPM level-3 products over a midlatitude basin: Is day-1 IMERG a good successor for TMPA 3B42V7? J. Hydrometeor., 17, 121137, doi:10.1175/JHM-D-15-0059.1.

    • Search Google Scholar
    • Export Citation
  • Tang, L., Tian Y. , Yan F. , and Habib E. , 2015: An improved procedure for the validation of satellite-based precipitation estimates. Atmos. Res., 163, 6173, doi:10.1016/j.atmosres.2014.12.016.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., and Peters-Lidard C. D. , 2007: Systematic anomalies over inland water bodies in satellite-based precipitation estimates. Geophys. Res. Lett., 34, L14403, doi:10.1029/2007GL030787.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., Peters-Lidard C. D. , Choudhury B. J. , and Garcia M. , 2007: Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications. J. Hydrometeor., 8, 11651183, doi:10.1175/2007JHM859.1.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., Huffman G. J. , Adler R. F. , Tang L. , Sapiano M. , Maggioni V. , and Wu H. , 2013: Modeling errors in daily precipitation measurements: Additive or multiplicative? Geophys. Res. Lett., 40, 20602065, doi:10.1002/grl.50320.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., Nearing G. S. , Peters-Lidard C. D. , Harrison K. W. , and Tang L. , 2016: Performance metrics, error modeling, and uncertainty quantification. Mon. Wea. Rev., 144, 607613, doi:10.1175/MWR-D-15-0087.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Xue, X., Hong Y. , Limaye A. S. , Gourley J. J. , Huffman G. J. , Khan S. I. , Dorji C. , and Chen S. , 2013: Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? J. Hydrol., 499, 9199, doi:10.1016/j.jhydrol.2013.06.042.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Qi Y. , Howard K. , Langston C. , and Kaney B. , 2011a: Radar Quality Index (RQI)—A combined measure of beam blockage and VPR effects in a national network. IAHS Publ., 351, 388393.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011b: National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 36 36 36
PDF Downloads 25 25 25

Performance of IMERG as a Function of Spatiotemporal Scale

View More View Less
  • 1 Universities Space Research Association, and NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 Earth Sciences Office, NASA Marshall Space Flight Center, Huntsville, Alabama
  • | 3 School of Civil Engineering and Environmental Sciences, University of Oklahoma, and NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • | 4 Earth System Sciences Interdisciplinary Center, University of Maryland, College Park, College Park, and NASA Goddard Space Flight Center, Greenbelt, Maryland
Restricted access

Abstract

The Integrated Multisatellite Retrievals for GPM (IMERG), a global high-resolution gridded precipitation dataset, will enable a wide range of applications, ranging from studies on precipitation characteristics to applications in hydrology to evaluation of weather and climate models. These applications focus on different spatial and temporal scales and thus average the precipitation estimates to coarser resolutions. Such a modification of scale will impact the reliability of IMERG. In this study, the performance of the Final Run of IMERG is evaluated against ground-based measurements as a function of increasing spatial resolution (from 0.1° to 2.5°) and accumulation periods (from 0.5 to 24 h) over a region in the southeastern United States. For ground reference, a product derived from the Multi-Radar/Multi-Sensor suite, a radar- and gauge-based operational precipitation dataset, is used. The TRMM Multisatellite Precipitation Analysis (TMPA) is also included as a benchmark. In general, both IMERG and TMPA improve when scaled up to larger areas and longer time periods, with better identification of rain occurrences and consistent improvements in systematic and random errors of rain rates. Between the two satellite estimates, IMERG is slightly better than TMPA most of the time. These results will inform users on the reliability of IMERG over the scales relevant to their studies.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0174.s1.

Corresponding author e-mail: Jackson Tan, jackson.tan@nasa.gov

This article is included in the Global Precipitation Measurement (GPM) special collection.

Abstract

The Integrated Multisatellite Retrievals for GPM (IMERG), a global high-resolution gridded precipitation dataset, will enable a wide range of applications, ranging from studies on precipitation characteristics to applications in hydrology to evaluation of weather and climate models. These applications focus on different spatial and temporal scales and thus average the precipitation estimates to coarser resolutions. Such a modification of scale will impact the reliability of IMERG. In this study, the performance of the Final Run of IMERG is evaluated against ground-based measurements as a function of increasing spatial resolution (from 0.1° to 2.5°) and accumulation periods (from 0.5 to 24 h) over a region in the southeastern United States. For ground reference, a product derived from the Multi-Radar/Multi-Sensor suite, a radar- and gauge-based operational precipitation dataset, is used. The TRMM Multisatellite Precipitation Analysis (TMPA) is also included as a benchmark. In general, both IMERG and TMPA improve when scaled up to larger areas and longer time periods, with better identification of rain occurrences and consistent improvements in systematic and random errors of rain rates. Between the two satellite estimates, IMERG is slightly better than TMPA most of the time. These results will inform users on the reliability of IMERG over the scales relevant to their studies.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0174.s1.

Corresponding author e-mail: Jackson Tan, jackson.tan@nasa.gov

This article is included in the Global Precipitation Measurement (GPM) special collection.

Supplementary Materials

    • Supplemental Materials (RAR 1.48 MB)
Save