• Asquith, W. H., 2001: Effects of regulation on L-moments of annual peak streamflow in Texas. USGS Water-Resources Investigations Rep. 01-4243, 66 pp. [Available online at https://pubs.usgs.gov/wri/wri014243/pdf/wri01-4243-new.pdf.]

  • Avila, L. A., and J. Cangialosi, 2012: Tropical cyclone report: Hurricane Irene (AL092011), 21–28 August 2011. NHC Tech. Rep., 45 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL092011_Irene.pdf.]

  • Ayalew, T. B., 2015: Physical basis of the power-law spatial scaling structure of peak discharges. Ph.D. thesis, The University of Iowa, 286 pp. [Available online at http://ir.uiowa.edu/etd/1537/.]

  • Ayalew, T. B., W. F. Krajewski, and R. Mantilla, 2014a: Connecting the power-law scaling structure of peak-discharges to spatially variable rainfall and catchment physical properties. Adv. Water Resour., 71, 3243, doi:10.1016/j.advwatres.2014.05.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayalew, T. B., W. F. Krajewski, R. Mantilla, and S. J. Small, 2014b: Exploring the effects of hillslope–channel link dynamics and excess rainfall properties on the scaling structure of peak-discharge. Adv. Water Resour., 64, 920, doi:10.1016/j.advwatres.2013.11.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batalla, R. J., C. M. Gomez, and G. M. Kondolf, 2004: Reservoir-induced changes in the Ebro River basin (NE Spain). J. Hydrol., 290, 117136, doi:10.1016/j.jhydrol.2003.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blöschl, G., and Coauthors, 2007: At what scale do climate variability and land cover change impact on flooding and low flows? Hydrol. Processes, 21, 12411247, doi:10.1002/hyp.6669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blöschl, G., T. Nester, J. Komma, J. Parajka, and R. A. Perdigao, 2013: The June 2013 flood in the Upper Danube basin, and comparisons with the 2002, 1954 and 1899 floods. Hydrol. Earth Syst. Sci., 17, 51975212, doi:10.5194/hess-17-5197-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunha, L. K., 2012: Exploring the benefits of satellite remote sensing for flood prediction across scales. Ph.D. thesis, The University of Iowa, 245 pp. [Available online at http://ir.uiowa.edu/etd/2848/.]

  • Cunha, L. K., P. V. Mandapaka, W. F. Krajewski, R. Mantilla, and A. A. Bradley, 2012: Impact of radar-rainfall error structure on estimated flood magnitude across scales: An investigation based on a parsimonious distributed hydrological model. Water Resour. Res., 48, W10515, doi:10.1029/2012WR012138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czajkowski, J., G. Villarini, E. Michel-Kerjan, and J. A. Smith, 2013: Determining tropical cyclone inland flooding loss on a large scale through a new flood peak ratio-based methodology. Environ. Res. Lett., 8, 044056, doi:10.1088/1748-9326/8/4/044056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czajkowski, J., G. Villarini, M. Montgomery, E. Michel-Kerjan, and R. Goska, 2017: Assessing current and future freshwater flood risk from North Atlantic tropical cyclones via insurance claims. Sci. Rep., 7, 41609, doi:10.1038/srep41609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domeneghetti, A., A. Castellarin, and A. Brath, 2012: Assessing rating-curve uncertainty and its effects on hydraulic model calibration. Hydrol. Earth Syst. Sci., 16, 11911202, doi:10.5194/hess-16-1191-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durbude, D. G., M. K. Jain, and S. K. Mishra, 2011: Long-term hydrologic simulation using SCS-CN-based improved soil moisture accounting procedure. Hydrol. Processes, 25, 561579, doi:10.1002/hyp.7789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., S. Ravela, E. Vivant, and C. Risi, 2006: A statistical deterministic approach to hurricane risk assessment. Bull. Amer. Meteor. Soc., 87, 299314, doi:10.1175/BAMS-87-3-299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367, doi:10.1175/BAMS-89-3-347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falcone, J., 2011: GAGES-II: Geospatial attributes of gages for evaluating streamflow geospatial data presentation form: Vector digital data. USGS, accessed 17 March 2016. [Available online at http://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml.]

  • Goel, N. K., S. M. Seth, and S. Chandra, 1998: Multivariate modeling of flood flows. J. Hydraul. Eng., 124, 146155, doi:10.1061/(ASCE)0733-9429(1998)124:2(146).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grumm, R. H., 2011: Irene rains over the East Coast. Tech. Doc., 30 pp. [Available online at http://cms.met.psu.edu/sref/severe/2011/28Aug2011.pdf.]

  • Gupta, V. K., and O. J. Mesa, 2014: Horton laws for hydraulic–geometric variables and their scaling exponents in self-similar river networks. Nonlinear Processes Geophys., 21, 10071025, doi:10.5194/npg-21-1007-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, V. K., T. B. Ayalew, R. Mantilla, and W. F. Krajewski, 2015: Classical and generalized Horton laws for peak flows in rainfall–runoff events. Chaos, 25, 075408, doi:10.1063/1.4922177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Javier, J. R. N., J. A. Smith, M. L. Baeck, and G. Villarini, 2010: Flash flooding in the Philadelphia metropolitan region. J. Hydrol. Eng., 15, 2938, doi:10.1061/(ASCE)HE.1943-5584.0000148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krstanovic, P. F., and V. P. Singh, 1987: A multivariate stochastic flood analysis using entropy. Hydrologic Frequency Modeling, V. P. Singh, Ed., D. Reidel, 515–539, doi:10.1007/978-94-009-3953-0_37.

    • Crossref
    • Export Citation
  • Laaha, G., J. O. Skøien, and G. Blöschl, 2012: Comparing geostatistical models for river networks. Geostatistics Oslo 2012, P. Abrahamsen, R. Hauge, and O. Kolbjørnsen, Eds., Quantitative Geology and Geostatistics, Vol. 17, Springer, 543–553, doi:10.1007/978-94-007-4153-9_44.

    • Crossref
    • Export Citation
  • Le Coz, J., 2012: A literature review of methods for estimating the uncertainty associated with stage–discharge relations. WMO Tech. Doc. PO6a, 21 pp. [Available online at http://www.wmo.int/pages/prog/hwrp/Flow/flow_tech/documents/WMO_PO6a_RC_uncertainty.pdf.]

  • Lin, Y.-L., J. Han, D. W. Hamilton, and C. Y. Huang, 1999: Orographic influence on a drifting cyclone. J. Atmos. Sci., 56, 534562, doi:10.1175/1520-0469(1999)056<0534:OIOADC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, M., and J. Smith, 2016: Extreme rainfall from landfalling tropical cyclones in the eastern United States: Hurricane Irene (2011). J. Hydrometeor., 17, 28832904, doi:10.1175/JHM-D-16-0072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mandapaka, P. V., and U. Germann, 2013: Radar-rainfall error models and ensemble generators. Rainfall: State of the Science, Geophys. Monorgr., Vol. 191, Amer. Geophys. Union, 247–264.

    • Crossref
    • Export Citation
  • Mandapaka, P. V., W. F. Krajewski, G. J. Ciach, G. Villarini, and J. A. Smith, 2009: Estimation of radar-rainfall error spatial correlation. Adv. Water Resour., 32, 10201030, doi:10.1016/j.advwatres.2008.08.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantilla, R., 2007: Physical basis of statistical scaling in peak flows and stream flow hydrographs for topologic and spatially embedded random self-similar channel networks. Ph.D. thesis, University of Colorado, 144 pp. [Available online at http://www.iihr.uiowa.edu/rmantilla/files/2015/03/Thesis_Mantilla.pdf.]

  • Mantilla, R., and V. K. Gupta, 2005: A GIS numerical framework to study the process basis of scaling statistics in river networks. IEEE Geosci. Remote Sens. Lett., 2, 404408, doi:10.1109/LGRS.2005.853571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantilla, R., V. K. Gupta, and O. J. Mesa, 2006: Role of coupled flow dynamics and real network structures on Hortonian scaling of peak flows. J. Hydrol., 322, 155167, doi:10.1016/j.jhydrol.2005.03.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menabde, M., S. Veitzer, V. Gupta, and M. Sivapalan, 2001: Tests of peak flow scaling in simulated self-similar river networks. Adv. Water Resour., 24, 991999, doi:10.1016/S0309-1708(01)00043-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merz, R., G. Blöschl, and G. Humer, 2008: National flood discharge mapping in Austria. Nat. Hazards, 46, 5372, doi:10.1007/s11069-007-9181-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michel, C., V. Andréassian, and C. Perrin, 2005: Soil Conservation Service Curve Number method: How to mend a wrong soil moisture accounting procedure? Water Resour. Res., 41, W02011, doi:10.1029/2004WR003191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, S., and V. Singh, 1999: Another look at SCS-CN method. J. Hydrol. Eng., 4, 257264, doi:10.1061/(ASCE)1084-0699(1999)4:3(257).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moser, B. A., W. A. Gallus Jr., and R. Mantilla, 2015: An initial assessment of radar data assimilation on warm season rainfall forecasts for use in hydrologic models. Wea. Forecasting, 30, 14911520, doi:10.1175/WAF-D-14-00125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NRCS, 1986: Urban hydrology for small watersheds. USDA TR-55, 164 pp. [Available online at https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf.]

  • Ogden, F., H. Sharif, S. Senarath, J. Smith, M. Baeck, and J. Richardson, 2000: Hydrologic analysis of the Fort Collins, Colorado, flash flood of 1997. J. Hydrol., 228, 82100, doi:10.1016/S0022-1694(00)00146-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paik, K., and P. Kumar, 2004: Hydraulic geometry and the nonlinearity of the network instantaneous response. Water Resour. Res., 40, W03602, doi:10.1029/2003WR002821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, D. L., and T. D. Prowse, 2001: Regulation effects on the lower Peace River, Canada. Hydrol. Processes, 15, 31813194, doi:10.1002/hyp.321.

  • Ponce, V. M., and R. H. Hawkins, 1996: Runoff curve number: Has it reached maturity? J. Hydrol. Eng., 1, 1119, doi:10.1061/(ASCE)1084-0699(1996)1:1(11).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sackl, B., and H. Bergmann, 1987: A bivariate flood model and its application. Hydrol. Freq. Model., 31, 571582, doi:10.1007/978-94-009-3953-0_40.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sivapalan, M., 2003: Process complexity at hillslope scale, process simplicity at the watershed scale: Is there a connection? Hydrol. Processes, 17, 10371041, doi:10.1002/hyp.5109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sivapalan, M., K. Beven, and E. F. Wood, 1987: On hydrologic similarity: 2. A scaled model of storm runoff production. Water Resour. Res., 23, 22662278, doi:10.1029/WR023i012p02266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skøien, J. O., R. Merz, and G. Blöschl, 2005: Top-kriging—Geostatistics on stream networks. Hydrol. Earth Syst. Sci., 2, 277287, doi:10.5194/hess-10-277-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., M. L. Baeck, K. L. Meierdiercks, A. J. Miller, and W. F. Krajewski, 2007: Radar rainfall estimation for flash flood forecasting in small urban watersheds. Adv. Water Resour., 30, 20872097, doi:10.1016/j.advwatres.2006.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., M. L. Baeck, G. Villarini, and W. F. Krajewski, 2010: The hydrology and hydrometeorology of flooding in the Delaware River basin. J. Hydrometeor., 11, 841859, doi:10.1175/2010JHM1236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 2006: Progress on the theory of orographic precipitation. Spec. Pap. Geol. Soc. Amer., 398, 116, doi:10.1130/2006.2398(01).

    • Search Google Scholar
    • Export Citation
  • Stedinger, J. R., 1983: Estimating a regional flood frequency distribution. Water Resour. Res., 19, 503510, doi:10.1029/WR019i002p00503.

  • Stedinger, J. R., and G. D. Tasker, 1985: Regional hydrologic analysis: 1. Ordinary, weighted, and generalized least squares compared. Water Resour. Res., 21, 14211432, doi:10.1029/WR021i009p01421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stedinger, J. R., and G. D. Tasker, 1986: Regional hydrologic analysis: 2. Model-error estimators, estimation of sigma and log-Pearson type 3 distributions. Water Resour. Res., 22, 14871499, doi:10.1029/WR022i010p01487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, S. R., 2005: Tropical cyclone report: Hurricane Ivan (AL092004). NHC Tech. Rep., 44 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL092004_Ivan.pdf.]

  • Vieux, B. E., and P. B. Bedient, 2004: Assessing urban hydrologic prediction accuracy through event reconstruction. J. Hydrol., 299, 217236, doi:10.1016/S0022-1694(04)00366-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and W. F. Krajewski, 2010: Sensitivity studies of the models of radar-rainfall uncertainties. J. Appl. Meteor. Climatol., 49, 288309, doi:10.1175/2009JAMC2188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and J. A. Smith, 2010: Flood peak distributions for the eastern United States. Water Resour. Res., 46, W06504, doi:10.1029/2009WR008395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westrick, K. J., and C. F. Mass, 2001: An evaluation of a high-resolution hydrometeorological modeling system for prediction of a cool-season flood event in a coastal mountainous watershed. J. Hydrometeor., 2, 161180, doi:10.1175/1525-7541(2001)002<0161:AEOAHR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, G. P., and M. G. Wolman, 1984: Downstream effects of dams on alluvial rivers. Geological Survey Prof. Paper 1286, 83 pp. [Available online at https://pubs.usgs.gov/pp/1286/report.pdf.]

    • Crossref
    • Export Citation
  • Wright, D. B., J. A. Smith, and M. L. Baeck, 2014: Flood frequency analysis using radar rainfall fields and stochastic storm transposition. Water Resour. Res., 50, 15921615, doi:10.1002/2013WR014224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, S., 1999: Applying bivariate normal distribution to flood frequency analysis. Water Int., 24, 248254, doi:10.1080/02508069908692168.

  • Zhu, L., S. M. Quiring, and K. A. Emanuel, 2013: Estimating tropical cyclone precipitation risk in Texas. Geophys. Res. Lett., 40, 62256230, doi:10.1002/2013GL058284.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 326 174 0
PDF Downloads 252 118 0

Spatial Characterization of Flood Magnitudes over the Drainage Network of the Delaware River Basin

View More View Less
  • 1 Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
Restricted access

Abstract

A framework to characterize the distribution of flood magnitudes over large river networks is developed using the Delaware River basin in the northeastern United States as a principal study region. Flood magnitudes are characterized by the flood index, which is defined as the ratio of the flood peak for a flood event to the historical 10-yr flood magnitude. Event flood peaks are computed continuously over the drainage network using a distributed hydrologic model, CUENCAS, with high-resolution radar rainfall fields as the principal forcing. The historical 10-yr flood is calculated based on scaling relationships between the 10-yr flood and drainage area. Summary statistics for characterizing the probability distribution and spatial correlation of flood magnitudes over the drainage network are developed based on the flood index. This framework is applied to four flood events in the Delaware River basin that reflect the principal flood-generating mechanisms in the eastern United States: landfalling tropical cyclones (Hurricane Ivan in September 2004 and Hurricane Irene in August 2011), late winter/early spring extratropical systems (April 2005), and warm season convective systems (June 2006). The framework can be utilized to characterize the spatial distribution of floods, most notably for floods caused by landfalling tropical cyclones, which play an important role in controlling the upper tail of flood peak magnitudes over much of the eastern United States.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Ping Lu, pingl@princeton.edu

Abstract

A framework to characterize the distribution of flood magnitudes over large river networks is developed using the Delaware River basin in the northeastern United States as a principal study region. Flood magnitudes are characterized by the flood index, which is defined as the ratio of the flood peak for a flood event to the historical 10-yr flood magnitude. Event flood peaks are computed continuously over the drainage network using a distributed hydrologic model, CUENCAS, with high-resolution radar rainfall fields as the principal forcing. The historical 10-yr flood is calculated based on scaling relationships between the 10-yr flood and drainage area. Summary statistics for characterizing the probability distribution and spatial correlation of flood magnitudes over the drainage network are developed based on the flood index. This framework is applied to four flood events in the Delaware River basin that reflect the principal flood-generating mechanisms in the eastern United States: landfalling tropical cyclones (Hurricane Ivan in September 2004 and Hurricane Irene in August 2011), late winter/early spring extratropical systems (April 2005), and warm season convective systems (June 2006). The framework can be utilized to characterize the spatial distribution of floods, most notably for floods caused by landfalling tropical cyclones, which play an important role in controlling the upper tail of flood peak magnitudes over much of the eastern United States.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Ping Lu, pingl@princeton.edu
Save