• Asong, Z. E., M. N. Khaliq, and H. S. Wheater, 2015: Regionalization of precipitation characteristics in the Canadian Prairie Provinces using large-scale atmospheric covariates and geophysical attributes. Stochastic Environ. Res. Risk Assess., 29, 875892, doi:10.1007/s00477-014-0918-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asong, Z. E., M. N. Khaliq, and H. S. Wheater, 2016a: Multisite multivariate modelling of daily precipitation and temperature in the Canadian Prairie Provinces using generalized linear models. Climate Dyn., 47, 29012921, doi:10.1007/s00382-016-3004-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asong, Z. E., M. N. Khaliq, and H. S. Wheater, 2016b: Projected changes in precipitation and temperature over the Canadian Prairie Provinces using the generalized linear model statistical downscaling approach. J. Hydrol., 539, 429446, doi:10.1016/j.jhydrol.2016.05.044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitew, M. M., M. Gebremichael, L. T. Ghebremichael, and Y. A. Bayissa, 2012: Evaluation of high-resolution satellite rainfall products through streamflow simulation in a hydrological modeling of a small mountainous watershed in Ethiopia. J. Hydrometeor., 13, 338350, doi:10.1175/2011JHM1292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borchert, J. A., 1950: The climate of the central North American grassland. Ann. Assoc. Amer. Geogr., 40, 139, doi:10.1080/00045605009352020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., 2005: Comparison of TRMM precipitation retrievals with rain gauge data from ocean buoys. J. Climate, 18, 178190, doi:10.1175/JCLI3259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Ebert, E. E., and J. L. McBride, 2000: Verification of precipitation in weather systems: Determination of systematic errors. J. Hydrol., 239, 179202, doi:10.1016/S0022-1694(00)00343-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., J. E. Janowiak, and C. Kidd, 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764, doi:10.1175/BAMS-88-1-47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferro, C. A. T., and D. B. Stephenson, 2011: Extremal dependence indices: Improved verification measures for deterministic forecasts of rare binary events. Wea. Forecasting, 26, 699713, doi:10.1175/WAF-D-10-05030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortin, V., and G. Roy, 2011: The Regional Deterministic Precipitation Analysis (RDPA). Tech. Note, 7 pp. [Available online at http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/op_systems/doc_opchanges/technote_rdpa_e_20110406.pdf.]

  • Fortin, V., C. Therrien, and F. Anctil, 2008: Correcting wind-induced bias in solid precipitation measurements in case of limited and uncertain data. Hydrol. Processes, 22, 33933402, doi:10.1002/hyp.6959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortin, V., G. Roy, N. Dobaldson, and A. Mahidjiba, 2015: Assimilation of radar quantitative precipitation estimation in the Canadian Precipitation Analysis (CaPA). J. Hydrol., 531, 296307, doi:10.1016/j.jhydrol.2015.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritz, S., and H. Wexler, 1960: Cloud pictures from satellite TIROS I. Mon. Wea. Rev., 88, 7987, doi:10.1175/1520-0493(1960)088<0079:CPFSTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., and F. Hossain, Eds., 2010: Satellite Rainfall Applications for Surface Hydrology. Springer, 327 pp.

    • Crossref
    • Export Citation
  • Gebremichael, M., W. F. Krajewski, M. Morrissey, D. Langerud, G. J. Huffman, and R. Adler, 2003: Error uncertainty analysis of GPCP monthly rainfall products: A data‐based simulation study. J. Appl. Meteor. Climatol., 42, 18371848, doi:10.1175/1520-0450(2003)042<1837:EUAOGM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germann, U., G. Galli, M. Boscacci, and M. Bolliger, 2006: Radar precipitation measurement in a mountainous region. Quart. J. Roy. Meteor. Soc., 132, 16691692, doi:10.1256/qj.05.190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodison, B. E., P. Y. T. Louie, and D. Yang, 1998: WMO solid precipitation intercomparison. Instruments and Observing Methods Rep. 67, WMO/TD-872, 212 pp. [Available online at https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-67-solid-precip/WMOtd872.pdf.]

  • Gottschalck, J., J. Meng, M. Rodell, and P. Houser, 2005: Analysis of multiple precipitation products and preliminary assessment of their impact on Global Land Data Assimilation System land surface states. J. Hydrometeor., 6, 573598, doi:10.1175/JHM437.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, E. H., D. T. Price, and T. A. Black, 2000: Postulated feedbacks of deciduous forest phenology on seasonal climate patterns in the western Canadian interior. J. Climate, 13, 42294243, doi:10.1175/1520-0442(2000)013<4229:PFODFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., D. Gochis, J. T. Cheng, K. L. Hsu, and S. Sorooshian, 2007: Evaluation of PERSIANN-CCS rainfall measurement using the NAME event rain gauge network. J. Hydrometeor., 8, 469482, doi:10.1175/JHM574.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hossain, F., and G. J. Huffman, 2008: Investigating error metrics for satellite rainfall data at hydrologically relevant scales. J. Hydrometeor., 9, 563575, doi:10.1175/2007JHM925.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasiglobal, multiyear, combined sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, and P. Xie, 2014: NASA Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 4.4, 30 pp. [Available online at https://pps.gsfc.nasa.gov/Documents/IMERG_ATBD_V4.pdf.]

  • Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, C. Kidd, E. J. Nelkin, and P. Xie, 2015a: NASA Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 4.5, 30 pp. [Available online at http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.]

  • Huffman, G. J., D. T. Bolvin, and E. J. Nelkin, 2015b: Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. NASA/GSFC Code 612 Tech. Doc., 48 pp. [Available online at http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf.]

  • Jolliffe, I. T., and D. B. Stephenson, Eds., 2003: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. Wiley, 240 pp.

  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., and G. Huffman, 2011: Global Precipitation Measurement. Meteor. Appl., 18, 334353, doi:10.1002/met.284.

  • Kubota, T., and Coauthors, 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, doi:10.1109/TGRS.2007.895337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lespinas, F., V. Fortin, G. Roy, P. Rasmussen, and T. Stadnyk, 2015: Performance evaluation of the Canadian Precipitation Analysis (CaPA). J. Hydrometeor., 16, 20452064, doi:10.1175/JHM-D-14-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2015: Comparison of Integrated Multisatellite Retrievals for GPM (IMERG) and TRMM Multisatellite Precipitation Analysis (TMPA) monthly precipitation products: Initial results. J. Hydrometeor., 17, 777790, doi:10.1175/JHM-D-15-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maggioni, V., P. C. Meyers, and M. D. Robinson, 2016: A review of merged high resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era. J. Hydrometeor., 17, 11011117, doi:10.1175/JHM-D-15-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., B. Brasnett, and S. Gagnon, 2007: A Canadian Precipitation Analysis (CaPA) project: Description and preliminary results. Atmos.–Ocean, 45, 117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, Y., E. N. Anagnostou, E. I. Nikolopoulos, and M. Borga, 2014: Error analysis of satellite rainfall products in mountainous basins. J. Hydrometeor., 15, 17781793, doi:10.1175/JHM-D-13-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • New, M., M. Todd, M. Hulme, and P. Jones, 2001: Precipitation measurements and trends in the twentieth century. Int. J. Climatol., 21, 18891922, doi:10.1002/joc.680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, A. J., and Coauthors, 2015: Gridded ensemble precipitation and temperature estimates for the contiguous United States. J. Hydrometeor., 16, 24812500, doi:10.1175/JHM-D-15-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and Coauthors, 1998: Homogeneity adjustments of in situ atmospheric climate data: A review. Int. J. Climatol., 18, 14931517, doi:10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-JOC329>3.0.CO;2-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prakash, S., A. K. Mitra, D. S. Pai, and A. AghaKouchak, 2016: From TRMM to GPM: How well can heavy rainfall be detected from space? Adv. Water Resour., 88, 17, doi:10.1016/j.advwatres.2015.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaff, L., D. Yang, Y. Li, and E. Mekis, 2015: Inconsistency in precipitation measurements across the Alaska–Yukon border. Cryosphere, 9, 24172428, doi:10.5194/tc-9-2417-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 15, doi:10.1007/s00704-013-0860-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., K. L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, G., Y. Ma, D. Long, L. Zhong, and Y. Hong, 2016: Evaluation of GPM Day-1 IMERG and TMPA version-7 legacy products over mainland China at multiple spatiotemporal scales. J. Hydrol., 533, 152167, doi:10.1016/j.jhydrol.2015.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., and A. Lin, 2015: An algorithm for integrating satellite precipitation estimates with in situ precipitation data on a pentad time scale. J. Geophys. Res. Atmos., 120, 37283744, doi:10.1002/2014JD022788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheater, H. S., and P. Gober, 2015: Water security and the science agenda. Water Resour. Res., 51, 54065424, doi:10.1002/2015WR016892.

  • Yong, B., D. Liu, J. J. Gourley, Y. Tian, G. J. Huffman, L. Ren, and Y. Hong, 2015: Global view of real-time TRMM Multisatellite Precipitation Analysis: Implication to its successor Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 96, 283296, doi:10.1175/BAMS-D-14-00017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 24 24 24
PDF Downloads 19 19 19

Evaluation of Integrated Multisatellite Retrievals for GPM (IMERG) over Southern Canada against Ground Precipitation Observations: A Preliminary Assessment

View More View Less
  • 1 Global Institute for Water Security and School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Restricted access

Abstract

The Global Precipitation Measurement (GPM) mission offers new opportunities for modeling a range of physical/hydrological processes at higher resolutions, especially for remote river systems where the hydrometeorological monitoring network is sparse and weather radar is not readily available. In this study, the recently released Integrated Multisatellite Retrievals for GPM [version 03 (V03) IMERG Final Run] product with high spatiotemporal resolution of 0.1° and 30 min is evaluated against ground-based reference measurements (at the 6-hourly, daily, and monthly time scales) over different terrestrial ecozones of southern Canada within a 23-month period from 12 March 2014 to 31 January 2016. While IMERG and ground-based observations show similar regional variations of mean daily precipitation, IMERG tends to overestimate higher monthly precipitation amounts over the Pacific Maritime ecozone. Results from using continuous as well as categorical skill metrics reveal that IMERG shows more satisfactory agreement at the daily and the 6-hourly time scales for the months of June–September, unlike November–March. In terms of precipitation extremes (defined by the 75th percentile threshold for reference data), apart from a tendency toward overdetection of heavy precipitation events, IMERG captured well the distribution of heavy precipitation amounts and observed wet/dry spell length distributions over most ecozones. However, low skill was found over large portions of the Montane Cordillera ecozone and a few stations in the Prairie ecozone. This early study highlights a potential applicability of V03 IMERG Final Run as a reliable source of precipitation estimates in diverse water resources and hydrometeorological applications for different regions in southern Canada.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0187.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Z. E. Asong, elvis.asong@usask.ca

Abstract

The Global Precipitation Measurement (GPM) mission offers new opportunities for modeling a range of physical/hydrological processes at higher resolutions, especially for remote river systems where the hydrometeorological monitoring network is sparse and weather radar is not readily available. In this study, the recently released Integrated Multisatellite Retrievals for GPM [version 03 (V03) IMERG Final Run] product with high spatiotemporal resolution of 0.1° and 30 min is evaluated against ground-based reference measurements (at the 6-hourly, daily, and monthly time scales) over different terrestrial ecozones of southern Canada within a 23-month period from 12 March 2014 to 31 January 2016. While IMERG and ground-based observations show similar regional variations of mean daily precipitation, IMERG tends to overestimate higher monthly precipitation amounts over the Pacific Maritime ecozone. Results from using continuous as well as categorical skill metrics reveal that IMERG shows more satisfactory agreement at the daily and the 6-hourly time scales for the months of June–September, unlike November–March. In terms of precipitation extremes (defined by the 75th percentile threshold for reference data), apart from a tendency toward overdetection of heavy precipitation events, IMERG captured well the distribution of heavy precipitation amounts and observed wet/dry spell length distributions over most ecozones. However, low skill was found over large portions of the Montane Cordillera ecozone and a few stations in the Prairie ecozone. This early study highlights a potential applicability of V03 IMERG Final Run as a reliable source of precipitation estimates in diverse water resources and hydrometeorological applications for different regions in southern Canada.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0187.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Z. E. Asong, elvis.asong@usask.ca

Supplementary Materials

    • Supplemental Materials (DOCX 2.12 MB)
Save