• Auer, I., and Coauthors, 2007: HISTALP—Historical Instrumental Climatological Surface Time Series of the Greater Alpine Region. Int. J. Climatol., 27, 1746, doi:10.1002/joc.1377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Begert, M., T. Schlegel, and W. Kirchhofer, 2005: Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. Int. J. Climatol., 25, 6580, doi:10.1002/joc.1118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bocchiola, D., and G. Diolaiuti, 2010: Evidence of climate change within the Adamello Glacier of Italy. Theor. Appl. Climatol., 100, 351369, doi:10.1007/s00704-009-0186-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian-Smith, J., M. C. Levy, and P. H. Gleick, 2015: Maladaptation to drought: A case report from California, USA. Sustain. Sci., 10, 491501, doi:10.1007/s11625-014-0269-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., J. Furtado, M. Barlow, V. Alexeev, and J. Cherry, 2012: Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett., 7, 014007, doi:10.1088/1748-9326/7/1/014007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franz, K. J., T. S. Hogue, and S. Sorooshian, 2008: Operational snow modeling: Addressing the challenges of an energy balance model for National Weather Service forecasts. J. Hydrol., 360, 4866, doi:10.1016/j.jhydrol.2008.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gocic, M., and S. Trajkovic, 2013: Analysis of changes in meteorological variables using Mann–Kendall and Sen’s slope estimator statistical tests in Serbia. Global Planet. Change, 100, 172182, doi:10.1016/j.gloplacha.2012.10.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hantel, M., and C. Maurer, 2011: The median winter snowline in the Alps. Meteor. Z., 20, 267276, doi:10.1127/0941-2948/2011/0495.

  • Harris, I., and P. D. Jones, 2015: Climatic Research Unit (CRU) Time-Series (TS) version 3.23 of high resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2014). Centre for Environmental Data Analysis, accessed 4 August 2016, doi:10.5285/4c7fdfa6-f176-4c58-acee-683d5e9d2ed5.

    • Crossref
    • Export Citation
  • Hodgkins, G. A., and R. W. Dudley, 2006: Changes in late‐winter snowpack depth, water equivalent, and density in Maine, 1926–2004. Hydrol. Processes, 20, 741751, doi:10.1002/hyp.6111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howat, I. M., and S. Tulaczyk, 2005: Trends in spring snowpack over a half-century of climate warming in California, USA. Ann. Glaciol., 40, 151156, doi:10.3189/172756405781813816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huss, M., and A. Bauder, 2009: 20th-century climate change inferred from four long-term point observations of seasonal mass balance. Ann. Glaciol., 50, 207214, doi:10.3189/172756409787769645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huss, M., R. Hock, A. Bauder, and M. Funk, 2010: 100-year mass changes in the Swiss Alps linked to the Atlantic multidecadal oscillation. Geophys. Res. Lett., 37, L10501, doi:10.1029/2010GL042616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenicek, M., J. Seibert, M. Zappa, M. Staudinger, and T. Jonas, 2016: Importance of maximum snow accumulation for summer low flows in humid catchments. Hydrol. Earth Syst. Sci., 20, 859874, doi:10.5194/hess-20-859-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jonas, T., C. Rixen, M. Sturm, and V. Stoeckli, 2008: How alpine plant growth is linked to snow cover and climate variability. J. Geophys. Res., 113, G03013, doi:10.1029/2007JG000680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jonas, T., C. Marty, and J. Magnusson, 2009: Estimating the snow water equivalent from snow depth measurements in the Swiss Alps. J. Hydrol., 378, 161167, doi:10.1016/j.jhydrol.2009.09.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jörg-Hess, S., N. Griessinger, and M. Zappa, 2015: Probabilistic forecasts of snow water equivalent and runoff in mountainous areas. J. Hydrometeor., 16, 21692186, doi:10.1175/JHM-D-14-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, G., Y. Vitasse, C. Rixen, C. Marty, and M. Rebetez, 2016: Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset. Climatic Change, 139, 637649, doi:10.1007/s10584-016-1806-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehning, M., P. Bartelt, B. Brown, T. Russi, U. Stöckli, and M. Zimmerli, 1999: SNOWPACK model calculations for avalanche warning based upon a new network of weather and snow stations. Cold Reg. Sci. Technol., 30, 145157, doi:10.1016/S0165-232X(99)00022-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., B. Stevens, and J. Marotzke, 2015: Eurasian winter cooling in the warming hiatus of 1998–2012. Geophys. Res. Lett., 42, 81318139, doi:10.1002/2015GL065327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusson, J., N. Wever, R. Essery, N. Helbig, A. Winstral, and T. Jonas, 2015: Evaluating snow models with varying process representations for hydrological applications. Water Resour. Res., 51, 27072723, doi:10.1002/2014WR016498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marty, C., 2008: Regime shift of snow days in Switzerland. Geophys. Res. Lett., 35, L12501, doi:10.1029/2008GL033998.

  • Marty, C., and J. Blanchet, 2012: Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics. Climatic Change, 111, 705721, doi:10.1007/s10584-011-0159-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marty, C., and R. Meister, 2012: Long-term snow and weather observations at Weissfluhjoch and its relation to other high-altitude observatories in the Alps. Theor. Appl. Climatol., 110, 573583, doi:10.1007/s00704-012-0584-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mock, C. J., and K. W. Birkeland, 2000: Snow avalanche climatology of the western United States mountain ranges. Bull. Amer. Meteor. Soc., 81, 23672392, doi:10.1175/1520-0477(2000)081<2367:SACOTW>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morán-Tejeda, E., J. I. López-Moreno, and M. Beniston, 2013: The changing roles of temperature and precipitation on snowpack variability in Switzerland as a function of altitude. Geophys. Res. Lett., 40, 21312136, doi:10.1002/grl.50463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., A. F. Hamlet, M. P. Clark, and D. P. Lettenmaier, 2005: Declining mountain snowpack in the western North America. Bull. Amer. Meteor. Soc., 86, 3949, doi:10.1175/BAMS-86-1-39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mudryk, L. R., C. Derksen, P. J. Kushner, and R. Brown, 2015: Characterization of Northern Hemisphere snow water equivalent datasets, 1981–2010. J. Climate, 28, 80378051, doi:10.1175/JCLI-D-15-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rebetez, M., and M. Reinhard, 2008: Monthly air temperature trends in Switzerland 1901–2000 and 1975–2004. Theor. Appl. Climatol., 91, 2734, doi:10.1007/s00704-007-0296-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, P. C., and Coauthors, 2016: Global impacts of the 1980s regime shift. Global Change Biol., 22, 682703, doi:10.1111/gcb.13106.

  • Rohrer, M. B., and L. N. Braun, 1994: Long-term records of the snow cover water equivalent in the Swiss Alps—2. Simulation. Nord. Hydrol., 25, 6578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rohrer, M. B., L. N. Braun, and H. Lang, 1994: Long-term records of the snow cover water equivalent in the Swiss Alps—1. Analysis. Nord. Hydrol., 25, 5364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadovský, Z., P. Faško, K. Mikulová, and J. Pecho, 2012: Exceptional snowfalls and the assessment of accidental snow loads for structural design. Cold Reg. Sci. Technol., 72, 1722, doi:10.1016/j.coldregions.2011.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scherrer, S. C., C. Wüthrich, M. Croci-Maspoli, R. Weingartner, and C. Appenzeller, 2013: Snow variability in the Swiss Alps 1864–2009. Int. J. Climatol., 33, 31623173, doi:10.1002/joc.3653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scherrer, S. C., M. Begert, M. Croci-Maspoli, and C. Appenzeller, 2016: Long series of Swiss seasonal precipitation: Regionalization, trends and influence of large-scale flow. Int. J. Climatol., 36, 36733689, doi:10.1002/joc.4584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmucki, E., C. Marty, C. Fierz, and M. Lehning, 2015: Simulations of 21st century snow response to climate change in Switzerland from a set of RCMs. Int. J. Climatol., 35, 32623273, doi:10.1002/joc.4205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schöber, J., S. Achleitner, J. Bellinger, R. Kirnbauer, and F. Schöberl, 2015: Analysis and modelling of snow bulk density in the Tyrolean Alps. Hydrol. Res., 47, 419441, doi:10.2166/nh.2015.132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serquet, G., C. Marty, and M. Rebetez, 2013: Monthly trends and the corresponding altitudinal shift in the snowfall/precipitation day ratio. Theor. Appl. Climatol., 114, 437444, doi:10.1007/s00704-013-0847-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skaugen, T., H. Bache Stranden, and T. Saloranta, 2012: Trends in snow water equivalent in Norway (1931–2009). Hydrol. Res., 43, 489499, doi:10.2166/nh.2012.109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sospedra-Alfonso, R., J. R. Melton, and W. J. Merryfield, 2015: Effects of temperature and precipitation on snowpack variability in the central Rocky Mountains as a function of elevation. Geophys. Res. Lett., 42, 44294438, doi:10.1002/2015GL063898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steger, C., S. Kotlarski, T. Jonas, and C. Schär, 2013: Alpine snow cover in a changing climate: A regional climate model perspective. Climate Dyn., 41, 735754, doi:10.1007/s00382-012-1545-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, I., 2009: Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol. Processes, 23, 7894, doi:10.1002/hyp.7128.

  • Yamaguchi, S., O. Abe, S. Nakai, and A. Sato, 2011: Recent fluctuations of meteorological and snow conditions in Japanese mountains. Ann. Glaciol., 52, 209215, doi:10.3189/172756411797252266.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22 22 22
PDF Downloads 21 21 21

Recent Evidence of Large-Scale Receding Snow Water Equivalents in the European Alps

View More View Less
  • 1 WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
  • | 2 WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland, and University of Innsbruck, Innsbruck, Austria
  • | 3 WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Restricted access

Abstract

Snow plays a critical role in the water cycle of many mountain regions and heavily populated areas downstream. In this study, changes of snow water equivalent (SWE) time series from long-term stations in five Alpine countries are analyzed. The sites are located between 500 and 3000 m above mean sea level, and the analysis is mainly based on measurement series from 1 February (winter) and 1 April (spring). The investigation was performed over different time periods, including the last six decades. The large majority of the SWE time series demonstrate a reduction in snow mass, which is more pronounced for spring than for winter. The observed SWE decrease is independent of latitude or longitude, despite the different climate regions in the Alpine domain. In contrast to measurement series from other mountain ranges, even the highest sites revealed a decline in spring SWE. A comparison with a 100-yr mass balance series from a glacier in the central Alps demonstrates that the peak SWEs have been on a record-low level since around the beginning of the twenty-first century at high Alpine sites. In the long term, clearly increasing temperatures and a coincident weak reduction in precipitation are the main drivers for the pronounced snow mass loss in the past.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0188.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Christoph Marty, marty@slf.ch

Abstract

Snow plays a critical role in the water cycle of many mountain regions and heavily populated areas downstream. In this study, changes of snow water equivalent (SWE) time series from long-term stations in five Alpine countries are analyzed. The sites are located between 500 and 3000 m above mean sea level, and the analysis is mainly based on measurement series from 1 February (winter) and 1 April (spring). The investigation was performed over different time periods, including the last six decades. The large majority of the SWE time series demonstrate a reduction in snow mass, which is more pronounced for spring than for winter. The observed SWE decrease is independent of latitude or longitude, despite the different climate regions in the Alpine domain. In contrast to measurement series from other mountain ranges, even the highest sites revealed a decline in spring SWE. A comparison with a 100-yr mass balance series from a glacier in the central Alps demonstrates that the peak SWEs have been on a record-low level since around the beginning of the twenty-first century at high Alpine sites. In the long term, clearly increasing temperatures and a coincident weak reduction in precipitation are the main drivers for the pronounced snow mass loss in the past.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0188.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Christoph Marty, marty@slf.ch

Supplementary Materials

    • Supplemental Materials (DOCX 110.70 KB)
Save