• Anagnostou, E. N., M. N. Anagnostou, A. Kruger, W. F. Krajewski, and B. Miriovsky, 2004: High-resolution rainfall estimation from X-band polarimetric radar measurements. J. Hydrometeor., 5, 110128, doi:10.1175/1525-7541(2004)005<0110:HREFXP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anagnostou, M. N., J. Kalogiros, F. S. Marzano, E. N. Anagnostou, M. Montopoli, and E. Piccioti, 2013: Performance evaluation of a new dual-polarization microphysical algorithm based on long-term X-band radar and disdrometer observations. J. Hydrometeor., 14, 560576, doi:10.1175/JHM-D-12-057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bertonasco, M. A. A., R. Notarpietro, M. Gabella, and U. Germann, 2013: Rainfall estimation improvements using polarization data from Monte Lema C-band weather radar in the southern European Alps. 2013 Int. Conf. on Electromagnetics in Advanced Applications, Turin, Italy, IEEE, 923926, doi:10.1109/ICEAA.2013.6632374.

    • Crossref
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 664 pp.

    • Crossref
    • Export Citation
  • Bringi, V. N., T. Tang, and V. Chandrasekar, 2004: Evaluation of a new polarimetrically based ZR relation. J. Atmos. Oceanic Technol., 21, 612623, doi:10.1175/1520-0426(2004)021<0612:EOANPB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., R. Thurai, and R. Hannesen, 2007: Dual-Polarization Weather Radar Handbook. 2nd ed. Gematronik GmbH, 163 pp.

  • Bringi, V. N., M. Rico-Ramirez, and M. Thurai, 2011: Rainfall estimation with an operational polarimetric C-band radar in the United Kingdom: Comparison with a gauge network and error analysis. J. Hydrometeor., 12, 935954, doi:10.1175/JHM-D-10-05013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., 2003: Local random errors in tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 20, 752759, doi:10.1175/1520-0426(2003)20<752:LREITB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., and W. F. Krajewski, 1999: Radar–rain gauge comparisons under observational uncertainties. J. Appl. Meteor., 38, 15191525, doi:10.1175/1520-0450(1999)038<1519:RRGCUO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., and W. F. Krajewski, 2006: Analysis and modeling of spatial correlation structure in small-scale rainfall in central Oklahoma. Adv. Water Resour., 29, 14501463, doi:10.1016/j.advwatres.2005.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunha, L. K., J. A. Smith, W. F. Krajewski, M. L. Baeck, and B.-C. Seo, 2015: NEXRAD NWS polarimetric precipitation product evaluation for IFloodS. J. Hydrometeor., 16, 16761699, doi:10.1175/JHM-D-14-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boor, C., 2001: A Practical Guide to Splines. Springer, 346 pp.

  • Diss, S., J. Testud, J. Lavabre, P. Ribstein, E. Moreau, and J. Parent du Chatelet, 2009: Ability of a dual polarized X-band radar to estimate rainfall. Adv. Water Resour., 32, 975985, doi:10.1016/j.advwatres.2009.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gatlin, P. N., M. Thurai, V. N. Bringi, W. Petersen, D. Wolff, A. Tokay, L. Carey, and M. Wingo, 2015: Searching for large raindrops: A global summary of two-dimensional video disdrometer observations. J. Appl. Meteor. Climatol., 54, 10691089, doi:10.1175/JAMC-D-14-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., and F. Testik, 2013: Microphysics, measurement, and analyses of rainfall. Rainfall: State of the Science, Geophys. Monogr., Vol. 191, Amer. Geophys. Union, 1–6.

    • Crossref
    • Export Citation
  • Giangrande, S. E., and A. V. Ryzhkov, 2008: Estimation of rainfall based on the results of polarimetric echo classification. J. Appl. Meteor. Climatol., 47, 24452462, doi:10.1175/2008JAMC1753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., S. Collis, A. K. Theisen, and A. Tokay, 2014: Precipitation estimation from the ARM distributed radar network during the MC3E campaign. J. Appl. Meteor. Climatol., 53, 21302147, doi:10.1175/JAMC-D-13-0321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, J. W. F., J. Tan, and M. Thurai, 1994: Technique for calibration of meteorological radars using differential phase. Electron. Lett., 30, 166167, doi:10.1049/el:19940119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., G. Scarchilli, V. Chandrasekar, and V. N. Bringi, 2001: Rainfall estimation from polarimetric radar measurements: Composite algorithms immune to variability in raindrop shape–size relation. J. Atmos. Oceanic Technol., 18, 17731786, doi:10.1175/1520-0426(2001)018<1773:REFPRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gosset, M., E. P. Zahirib, and S. Moumounic, 2010: Rain drop size distribution variability and impact on X-band polarimetric radar retrieval: Results from the AMMA campaign in Benin. Quart. J. Roy. Meteor. Soc., 136, 243256, doi:10.1002/qj.556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., and J. J. Gourley, 2014: Radar Hydrology: Principles, Models, and Applications. CRC Press, 176 pp.

    • Crossref
    • Export Citation
  • Hou, A., G. Skofronick-Jackson, and C. Kummerow, 2008: Global Precipitation Measurement. Precipitation: Advances in Measurement, Estimation and Prediction, S. Michaelides, Ed., Springer, 131–169.

    • Crossref
    • Export Citation
  • Huang, G.-J., V. N. Bringi, and M. Thurai, 2008: Orientation angle distributions of drops after an 80-m fall using a 2D video disdrometer. J. Atmos. Oceanic Technol., 25, 17171723, doi:10.1175/2008JTECHA1075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J., and V. N. Bringi, 1995: An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements. J. Atmos. Oceanic Technol., 12, 643648, doi:10.1175/1520-0426(1995)012<0643:AIFTFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaffrain, J., and A. Berne, 2012: Influence of the subgrid variability of the raindrop size distribution on radar rainfall estimators. J. Appl. Meteor. Climatol., 51, 780785, doi:10.1175/JAMC-D-11-0185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalogiros, J., M. N. Anagnostou, E. N. Anagnostou, M. Montopoli, E. Picciotti, and F. S. Marzano, 2013: Optimum estimation of rain microphysical parameters from X-band dual-polarization radar observables. IEEE Trans. Geosci. Remote Sens., 51, 30633076, doi:10.1109/TGRS.2012.2211606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalogiros, J., M. N. Anagnostou, E. N. Anagnostou, M. Montopoli, E. Picciotti, and F. S. Marzano, 2014: Evaluation of a new polarimetric algorithm for rain-path attenuation correction of X-band radar observations against disdrometer. IEEE Trans. Geosci. Remote Sens., 52, 13691380, doi:10.1109/TGRS.2013.2250979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., Z. Nan, F. Lei, V. N. Bringi, J. Nystuen, and M. Whimpey, 2001a: A comparison of radar rainfall estimators during the South China Sea Monsoon Experiment (SCSMEX). 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., P16.6. [Available online at https://ams.confex.com/ams/30radar/techprogram/paper_21479.htm.]

  • Keenan, T. D., L. D. Carey, D. S. Zrnić, and P. T. May, 2001b: Sensitivity of 5-cm wavelength polarimetric radar variables to raindrop axial ratio and drop size distribution. J. Appl. Meteor., 40, 526545, doi:10.1175/1520-0450(2001)040<0526:SOCWPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., 2007: Ground networks: Are we doing the right thing? Measuring Precipitation From Space: EURAINSAT and the Future, V. Levizzani, P. Bauer, and F. J. Turk, Eds., Springer, 403–418.

    • Crossref
    • Export Citation
  • Krajewski, W. F., and J. A. Smith, 2002: Radar hydrology: Rainfall estimation. Adv. Water Resour., 25, 13871394, doi:10.1016/S0309-1708(02)00062-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., G. J. Ciach, and E. Habib, 2003: An analysis of small-scale rainfall variability in different climatic regimes. Hydrol. Sci. J., 48, 151162, doi:10.1623/hysj.48.2.151.44694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., G. Villarini, and J. A. Smith, 2010: Radar–rainfall uncertainties: Where are we after thirty years of effort? Bull. Amer. Meteor. Soc., 91, 8794, doi:10.1175/2009BAMS2747.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602617, doi:10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Bouar, E., J. Testud, and T. D. Keenan, 2001: Validation of the rain profiling algorithm “ZPHI” from the C-band polarimetric weather radar in Darwin. J. Atmos. Oceanic Technol., 18, 18191837, doi:10.1175/1520-0426(2001)018<1819:VOTRPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maki, M., S.-G. Park, and V. N. Bringi, 2005: Effect of natural variations in rain drop size distributions on rain rate estimators of 3 cm wavelength polarimetric radar. J. Meteor. Soc. Japan, 83, 871893, doi:10.2151/jmsj.83.871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2010: Evaluating polarimetric X-band radar rainfall estimators during HMT. J. Atmos. Oceanic Technol., 27, 122134, doi:10.1175/2009JTECHA1318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., K. A. Clark, B. E. Martner, and A. Tokay, 2002: X-band polarimetric radar measurements of rainfall. J. Appl. Meteor., 41, 941952, doi:10.1175/1520-0450(2002)041<0941:XBPRMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., D. E. Kingsmill, B. E. Martner, and F. M. Ralph, 2005: The utility of X-band polarimetric radar for quantitative estimates of rainfall parameters. J. Hydrometeor., 6, 248262, doi:10.1175/JHM424.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. Cifelli, P. C. Kennedy, S. W. Nesbitt, S. A. Rutledge, V. N. Bringi, and B. E. Martner, 2006: A comparative study of rainfall retrievals based on specific differential phase shifts at X- and S-band radar frequencies. J. Atmos. Oceanic Technol., 23, 952963, doi:10.1175/JTECH1887.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. Cifelli, and D. Gochis, 2013: Measurements of heavy convective rainfall in the presence of hail in flood-prone areas using an X-band polarimetric radar. J. Appl. Meteor. Climatol., 52, 395407, doi:10.1175/JAMC-D-12-052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLaughlin, D., and Coauthors, 2009: Short-wavelength technology and the potential for distributed networks of small radar systems. Bull. Amer. Meteor. Soc., 90, 17971817, doi:10.1175/2009BAMS2507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, K. V., A. Kruger, and W. F. Krajewski, 2013: Monitoring cross-channel correlation solar scan measurements using the Iowa X-band polarimetric radars. 2013 IEEE Int. Geoscience and Remote Sensing Symp., Melbourne, Australia, IEEE, 1688–1691, doi:10.1109/IGARSS.2013.6723119.

    • Crossref
    • Export Citation
  • Mishra, K. V., A. Kruger, and W. F. Krajewski, 2014: Compressed sensing applied to weather radar. 2014 IEEE Int. Geoscience and Remote Sensing Symp., Québec City, Canada, IEEE, 1832–1835, doi:10.1109/IGARSS.2014.6946811.

    • Crossref
    • Export Citation
  • Mishra, K. V., and Coauthors, 2016: Deployment and performance analyses of high-resolution Iowa XPOL radar system during the NASA IFloodS campaign. J. Hydrometeor., 17, 455479, doi:10.1175/JHM-D-15-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moreau, E., J. Testud, and E. Le Bouar, 2009: Rainfall spatial variability observed by X-band weather radar and its implication for the accuracy of rainfall estimates. Adv. Water Resour., 32, 10111019, doi:10.1016/j.advwatres.2008.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oh, Y.-A., D.-H. Lee, S.-H. Jung, K.-Y. Nam, and G.-W. Lee, 2016: Attenuation correction effects in rainfall estimation at X-band dual-polarization radar: Evaluation with a dense rain gauge network. Adv. Meteor., 2016, 9716535, doi:10.1155/2016/9716535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S.-G., M. Maki, K. Iwanami, R. Misumi, and V. N. Bringi, 2004: Correction of radar reflectivity and differential reflectivity for rain attenuation and estimation of rainfall at X-band wavelength. Sixth Int. Symp. on Hydrological Applications of Weather Radar, Melbourne, Australia, Bureau of Meteorology. [Available online at http://www.bom.gov.au/announcements/conferences/hawr2004/HAWR_Programme.pdf.]

  • Park, S.-G., M. Maki, K. Iwanami, V. N. Bringi, and V. Chandrasekar, 2005: Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part II: Evaluation and application. J. Atmos. Oceanic Technol., 22, 16331655, doi:10.1175/JTECH1804.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepler, A. S., and P. T. May, 2012: A robust error-based rain estimation method for polarimetric radar. Part II: Case study. J. Appl. Meteor. Climatol., 51, 17021713, doi:10.1175/JAMC-D-11-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepler, A. S., P. T. May, and M. Thurai, 2011: A robust error-based rain estimation method for polarimetric radar. Part I: Development of a method. J. Appl. Meteor. Climatol., 50, 20922103, doi:10.1175/JAMC-D-10-05029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purdy, J. C., G. L. Austin, A. W. Seed, and I. D. Cluckie, 2005: Radar evidence of orographic enhancement due to the seeder feeder mechanism. Meteor. Appl., 12, 199206, doi:10.1017/S1350482705001672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rinehart, R. E., 1997: Radar for Meteorologists. 3rd ed. Rinehart Publishing, 428 pp.

  • Ryzhkov, A. V., and D. S. Zrnić, 1995: Comparison of dual-polarization radar estimators of rain. J. Atmos. Oceanic Technol., 12, 249256, doi:10.1175/1520-0426(1995)012<0249:CODPRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, and T. J. Schuur, 2005: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502515, doi:10.1175/JAM2213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. Diederich, P. Zhang, and C. Simmer, 2014: Potential utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking. J. Atmos. Oceanic Technol., 31, 599619, doi:10.1175/JTECH-D-13-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneebeli, M., and A. Berne, 2012: An extended Kalman filter framework for polarimetric X-band weather: Radar data processing. J. Atmos. Oceanic Technol., 29, 711730, doi:10.1175/JTECH-D-10-05053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneebeli, M., N. Dawes, M. Lehning, and A. Berne, 2013: High-resolution vertical profiles of X-band polarimetric radar observables during snowfall in the Swiss Alps. J. Appl. Meteor. Climatol., 52, 378394, doi:10.1175/JAMC-D-12-015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scipión, D. E., R. Mott, M. Lehning, M. Schneebeli, and A. Berne, 2013: Seasonal small-scale spatial variability in alpine snowfall and snow accumulation. Water Resour. Res., 49, 14461457, doi:10.1002/wrcr.20135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, B.-C., and W. F. Krajewski, 2015: Correcting temporal sampling error in radar-rainfall: Effect of advection parameters and rain storm characteristics on the correction accuracy. J. Hydrol., 531, 272283, doi:10.1016/j.jhydrol.2015.04.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, B.-C., B. Dolan, W. F. Krajewski, S. A. Rutledge, and W. Petersen, 2015: Comparison of single- and dual-polarization-based rainfall estimates using NEXRAD data for the NASA Iowa Flood Studies project. J. Hydrometeor., 16, 16581675, doi:10.1175/JHM-D-14-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, D. J., A. Seed, and G. Delrieu, 2010: Radar and multisensor rainfall estimation for hydrologic applications. Rainfall: State of the Science, Geophys. Monogr., Vol. 191, Amer. Geophys. Union, 79–104.

    • Crossref
    • Export Citation
  • Silvestro, F., N. Rebora, and L. Ferraris, 2009: An algorithm for real-time rainfall rate estimation by using polarimetric radar: RIME. J. Hydrometeor., 10, 227240, doi:10.1175/2008JHM1015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapiador, F., and R. Checa, 2010: An experiment to measure the spatial variability of rain drop size distribution using sixteen laser disdrometers. Geophys. Res. Lett., 37, L16803, doi:10.1029/2010GL044120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., E. Le Bouar, E. Obligis, and M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356, doi:10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., and V. N. Bringi, 2005: Drop axis ratios from a 2D video disdrometer. J. Atmos. Oceanic Technol., 22, 966978, doi:10.1175/JTECH1767.1.

  • Thurai, M., G.-J. Huang, V. N. Bringi, W. L. Randeu, and M. M. Schönhuber, 2007: Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain. J. Atmos. Oceanic Technol., 24, 10191032, doi:10.1175/JTECH2051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., D. Hudak, and V. N. Bringi, 2008: On the possible use of copolar correlation coefficient for improving the drop size distribution estimates at C band. J. Atmos. Oceanic Technol., 25, 18731880, doi:10.1175/2008JTECHA1077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., M. Szakáll, V. N. Bringi, K. V. Beard, S. K. Mitra, and S. Borrmann, 2009: Drop shapes and axis ratio distributions: Comparison between 2D video disdrometer and wind-tunnel measurements. J. Atmos. Oceanic Technol., 26, 14271432, doi:10.1175/2009JTECHA1244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., V. N. Bringi, L. D. Carey, P. Gatlin, E. Schultz, and W. A. Petersen, 2012: Estimating the accuracy of polarimetric radar–based retrievals of drop size distribution parameters and rain rate: An application of error variance separation using radar-derived spatial correlations. J. Hydrometeor., 13, 10661079, doi:10.1175/JHM-D-11-070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., P. Kennedy, V. N. Bringi, B. Notaros, and S. Rutledge, 2016: Propagation effects at X-band from the 2015 rain measurement campaign in Greeley, Colorado. 10th European Conf. on Antennas and Propagation, Davos, Switzerland, IEEE, 1–5, doi:10.1109/EuCAP.2016.7481927.

    • Crossref
    • Export Citation
  • Tokay, A., and P. G. Bashor, 2010: An experimental study of small-scale variability of raindrop size distribution. J. Appl. Meteor. Climatol., 49, 23482365, doi:10.1175/2010JAMC2269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., A. Kruger, and W. F. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteor., 40, 20832097, doi:10.1175/1520-0450(2001)040<2083:CODSDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., and A. Berne, 2008: Stochastic simulation experiment to assess radar rainfall retrieval uncertainties associated with attenuation and its correction. Hydrol. Earth Syst. Sci., 12, 587601, doi:10.5194/hess-12-587-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van de Beek, C. Z., H. Leijnse, J. N. M. Stricker, R. Uijlenhoet, and H. W. J. Russchenberg, 2010: Performance of high-resolution X-band radar for rainfall measurement in the Netherlands. Hydrol. Earth Syst. Sci., 14, 205221, doi:10.5194/hess-14-205-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vieux, B. E., and J. M. Imgarten, 2012: On the scale-dependent propagation of hydrologic uncertainty using high-resolution X-band radar rainfall estimates. Atmos. Res., 103, 96105, doi:10.1016/j.atmosres.2011.06.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and W. F. Krajewski, 2010: Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv. Geophys., 31, 107129, doi:10.1007/s10712-009-9079-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., P. V. Mandapaka, W. F. Krajewski, and R. J. Moore, 2008: Rainfall and sampling uncertainties: A rain gauge perspective. J. Geophys. Res., 113, D11102, doi:10.1029/2007JD009214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, G., A. Protat, P. T. May, X. Wang, and W. Moran, 2015: A cluster-based method for hydrometeor classification using polarimetric variables. Part I: Interpretation and analysis. J. Atmos. Oceanic Technol., 32, 13201340, doi:10.1175/JTECH-D-13-00178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, C., and D. Lee, 2015: Algorithm development for the optimum rainfall estimation using polarimetric variables in Korea. Adv. Meteor., 2015, 395937, doi:10.1155/2015/395937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., M. Xue, Q. Cao, and D. Dawson, 2008: Diagnosing the intercept parameter for exponential raindrop size distribution based on video disdrometer observations: Model development. J. Appl. Meteor. Climatol., 47, 29832992, doi:10.1175/2008JAMC1876.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 17 17 17
PDF Downloads 9 9 9

Initial Results of a New Composite-Weighted Algorithm for Dual-Polarized X-Band Rainfall Estimation

View More View Less
  • 1 Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado
  • | 2 Iowa Flood Center, and IIHR—Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa
  • | 3 Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado
  • | 4 Iowa Flood Center, and IIHR—Hydroscience and Engineering, and Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, Iowa
Restricted access

Abstract

Data analyses for the mobile Iowa X-band polarimetric (XPOL) radar from a long-duration rain event that occurred during the NASA Iowa Flood Studies (IFloodS) field campaign are presented. A network of six 2D video disdrometers (2DVDs) is used to derive four rain-rate estimators for the XPOL-5 radar. The rain accumulation validations with a collocated network of twin and triple tipping-bucket rain gauges have highlighted the need for combined algorithms because no single estimator was found to be sufficient for all cases considered. A combined version of weighted and composite algorithms is introduced, including a new R(Ah, Zdr) rainfall estimator for X band, where Ah is the specific attenuation for horizontal polarization and Zdr is the differential reflectivity. Based on measurement and algorithm errors, the weights are derived to be as piecewise constant functions over reflectivity values. The weights are later turned into continuous functions using smoothing splines. A methodology to derive the weights in near–real time is proposed for the composite-weighted algorithm. Comparisons of 2-h accumulations and 8-h event totals obtained from the XPOL-5 with 12 rain gauges have shown 10%–40% improvement in normalized bias over individual rainfall estimators. The analyses have enabled the development of rain-rate estimators for the Iowa XPOL.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Kumar Vijay Mishra, kumarvijay-mishra@uiowa.edu

This article is included in the IFloodS 2013: A Field Campaign to Support the NASA-JAXA Global Precipitation Measurement Mission Special Collection.

Abstract

Data analyses for the mobile Iowa X-band polarimetric (XPOL) radar from a long-duration rain event that occurred during the NASA Iowa Flood Studies (IFloodS) field campaign are presented. A network of six 2D video disdrometers (2DVDs) is used to derive four rain-rate estimators for the XPOL-5 radar. The rain accumulation validations with a collocated network of twin and triple tipping-bucket rain gauges have highlighted the need for combined algorithms because no single estimator was found to be sufficient for all cases considered. A combined version of weighted and composite algorithms is introduced, including a new R(Ah, Zdr) rainfall estimator for X band, where Ah is the specific attenuation for horizontal polarization and Zdr is the differential reflectivity. Based on measurement and algorithm errors, the weights are derived to be as piecewise constant functions over reflectivity values. The weights are later turned into continuous functions using smoothing splines. A methodology to derive the weights in near–real time is proposed for the composite-weighted algorithm. Comparisons of 2-h accumulations and 8-h event totals obtained from the XPOL-5 with 12 rain gauges have shown 10%–40% improvement in normalized bias over individual rainfall estimators. The analyses have enabled the development of rain-rate estimators for the Iowa XPOL.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Kumar Vijay Mishra, kumarvijay-mishra@uiowa.edu

This article is included in the IFloodS 2013: A Field Campaign to Support the NASA-JAXA Global Precipitation Measurement Mission Special Collection.

Save