• Baldocchi, D. D., 2003: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biol., 9, 479492, doi:10.1046/j.1365-2486.2003.00629.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2004: Understanding hydrometeorology using global models. Bull. Amer. Meteor. Soc., 85, 16731688, doi:10.1175/BAMS-85-11-1673.

  • Betts, A. K., and J. C. Chiu, 2010: Idealized model for changes in equilibrium temperature, mixed layer depth, and boundary layer cloud over land in a doubled CO2 climate. J. Geophys. Res., 115, D19108, doi:10.1029/2009JD012888.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and A. B. Tawfik, 2016: Annual climatology of the diurnal cycle on the Canadian Prairies. Front. Earth Sci., 4, doi:10.3389/feart.2016.00001.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., J. H. Ball, A. C. M. Beljaars, M. J. Miller, and P. Viterbo, 1996: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101, 72097225, doi:10.1029/95JD02135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., B. Helliker, and J. Berry, 2004: Coupling between CO2, water vapor, temperature and radon and their fluxes in an idealized equilibrium boundary layer over land. J. Geophys. Res., 109, D18103, doi:10.1029/2003JD004420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., R. Desjardins, and D. Worth, 2013a: Cloud radiative forcing of the diurnal cycle climate of the Canadian Prairies. J. Geophys. Res. Atmos., 118, 89358953, doi:10.1002/jgrd.50593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., R. Desjardins, D. Worth, and D. Cerkowniak, 2013b: Impact of land use change on the diurnal cycle climate of the Canadian Prairies. J. Geophys. Res. Atmos., 118, 11 99612 011, doi:10.1002/2013JD020717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., R. Desjardins, D. Worth, and B. Beckage, 2014a: Climate coupling between temperature, humidity, precipitation and cloud cover over the Canadian Prairies. J. Geophys. Res. Atmos., 119, 13 30513 326, doi:10.1002/2014JD022511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., R. Desjardins, D. Worth, S. Wang, and J. Li, 2014b: Coupling of winter climate transitions to snow and clouds over the Prairies. J. Geophys. Res. Atmos., 119, 11181139, doi:10.1002/2013JD021168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., R. Desjardins, A. C. M. Beljaars, and A. Tawfik, 2015: Observational study of land-surface–cloud–atmosphere coupling on daily timescales. Front. Earth Sci., 3, doi:10.3389/feart.2015.00013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., R. Desjardins, and D. Worth, 2016: The impact of clouds, land use and snow cover on climate in the Canadian Prairies. Adv. Sci. Res, 13, 3742, doi:10.5194/asr-13-37-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BSRN, 2016: World Radiation Monitoring Center. Baseline Surface Radiation Network, Accessed 24 August 2016. [Available online at http://bsrn.awi.de/.]

  • Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis, and transpiration: A model that includes a laminar boundary layer. Agric. For. Meteor., 54, 107136, doi:10.1016/0168-1923(91)90002-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., K. E. Trenberth, and T. R. Karl, 1999: Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Climate, 12, 24512473, doi:10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and A. A. M. Holtslag, 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 8699, doi:10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fennessy, M. J., and J. Shukla, 1999: Impact of initial soil wetness on seasonal atmospheric prediction. J. Climate, 12, 31673180, doi:10.1175/1520-0442(1999)012<3167:IOISWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., E. F. Wood, and R. K. Vinukollu, 2012: A global intercomparison of modeled and observed land–atmosphere coupling. J. Hydrometeor., 13, 749784, doi:10.1175/JHM-D-11-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y., and G. Wang, 2007: Impact of initial soil moisture anomalies on subsequent precipitation over North America in the coupled land–atmosphere model CAM3–CLM3. J. Hydrometeor., 8, 513533, doi:10.1175/JHM611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 2001: Soil moisture memory in climate models. J. Hydrometeor., 2, 558570, doi:10.1175/1525-7541(2001)002<0558:SMMICM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and S. P. P. Manahama, 2012: Land surface controls on hydroclimatic means and variability. J. Hydrometeor., 13, 16041619, doi:10.1175/JHM-D-12-050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2011: The Second Phase of the Global Land–Atmosphere Coupling Experiment: Soil moisture contributions to subseasonal forecast skill. J. Hydrometeor., 12, 805822, doi:10.1175/2011JHM1365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1977: Climate and the efficiency of crop production in Britain. Philos. Trans. Roy. Soc. London, 281B, 277294, doi:10.1098/rstb.1977.0140.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and E. A. B. Eltahir, 2001: Pathways relating soil moisture conditions to future summer rainfall within a model of the land–atmosphere system. J. Climate, 14, 12271241, doi:10.1175/1520-0442(2001)014<1227:PRSMCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, S., and G. Salvucci, 2016: Empirical evidence of contrasting soil moisture–precipitation feedbacks across the United States. Science, 352, 825828, doi:10.1126/science.aaa7185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van den Hurk, B., F. Doblas-Reyes, G. Balsamo, R. D. Koster, S. I. Seneviratne, and H. Camargo Jr., 2012: Soil moisture effects on seasonal temperature and precipitation forecast scores in Europe. Climate Dyn., 38, 349362, doi:10.1007/s00382-010-0956-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and Coauthors, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27, 1738, doi:10.1007/s00382-006-0111-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, M. J., F. H. Lambert, and J. M. Gregory, 2013: Origins of differences in climate sensitivity, forcing and feedback in climate models. Climate Dyn., 40, 677707, doi:10.1007/s00382-012-1336-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W., R. E. Dickinson, H. Wang, Y. Liu, and M. Shaikha, 2007: Covariabilities of spring soil moisture and summertime United States precipitation in a climate simulation. Int. J. Climatol., 27, 429438, doi:10.1002/joc.1419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., and Coauthors, 2010:ARM climate modeling best estimate data: A new data product for climate studies. Bull. Amer. Meteor. Soc., 91, 1320, doi:10.1175/2009BAMS2891.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 151 87 0
PDF Downloads 80 43 0

Revisiting Hydrometeorology Using Cloud and Climate Observations

View More View Less
  • 1 Atmospheric Research, Pittsford, Vermont
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
  • | 3 Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
Restricted access

Abstract

This paper uses 620 station years of hourly Canadian Prairie climate data to analyze the coupling of monthly near-surface climate with opaque cloud, a surrogate for radiation, and precipitation anomalies. While the cloud–climate coupling is strong, precipitation anomalies impact monthly climate for as long as 5 months. The April climate has memory of precipitation anomalies back to freeze-up in November, mostly stored in the snowpack. The summer climate has memory of precipitation anomalies back to the beginning of snowmelt in March. In the warm season, mean temperature is strongly correlated to opaque cloud anomalies, but only weakly to precipitation anomalies. Mixing ratio anomalies are correlated to precipitation, but only weakly to cloud. The diurnal cycle of mixing ratio shifts upward with increasing precipitation anomalies. Positive precipitation anomalies are coupled to a lower afternoon lifting condensation level and a higher afternoon equivalent potential temperature; both favor increased convection and precipitation. Regression coefficients on precipitation increase from wet to dry conditions. This is consistent with increased uptake of soil water when monthly precipitation is low, until drought conditions are reached, and also consistent with gravity satellite observations. Regression analysis shows monthly opaque cloud cover is tightly correlated to three climate variables that are routinely observed: diurnal temperature range, mean temperature, and mean relative humidity. The set of correlation coefficients, derived from cloud and climate observations, could be used to evaluate the representation of the land–cloud–atmosphere system in both forecast and climate models.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Alan K. Betts, akbetts@aol.com

Abstract

This paper uses 620 station years of hourly Canadian Prairie climate data to analyze the coupling of monthly near-surface climate with opaque cloud, a surrogate for radiation, and precipitation anomalies. While the cloud–climate coupling is strong, precipitation anomalies impact monthly climate for as long as 5 months. The April climate has memory of precipitation anomalies back to freeze-up in November, mostly stored in the snowpack. The summer climate has memory of precipitation anomalies back to the beginning of snowmelt in March. In the warm season, mean temperature is strongly correlated to opaque cloud anomalies, but only weakly to precipitation anomalies. Mixing ratio anomalies are correlated to precipitation, but only weakly to cloud. The diurnal cycle of mixing ratio shifts upward with increasing precipitation anomalies. Positive precipitation anomalies are coupled to a lower afternoon lifting condensation level and a higher afternoon equivalent potential temperature; both favor increased convection and precipitation. Regression coefficients on precipitation increase from wet to dry conditions. This is consistent with increased uptake of soil water when monthly precipitation is low, until drought conditions are reached, and also consistent with gravity satellite observations. Regression analysis shows monthly opaque cloud cover is tightly correlated to three climate variables that are routinely observed: diurnal temperature range, mean temperature, and mean relative humidity. The set of correlation coefficients, derived from cloud and climate observations, could be used to evaluate the representation of the land–cloud–atmosphere system in both forecast and climate models.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Alan K. Betts, akbetts@aol.com
Save