• Azorin-Molina, C., and Coauthors, 2015: Atmospheric evaporative demand observations, estimates and driving factors in Spain (1961–2011). J. Hydrol., 523, 262277, doi:10.1016/j.jhydrol.2015.01.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, A., and Coauthors, 2016: Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Climate Change, 6, 869874, doi:10.1038/nclimate3029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., and M. B. Parlange, 1998: Hydrologic cycle explains the evaporation paradox. Nature, 396, 30, doi:10.1038/23845.

  • Burn, D. H., and N. M. Hesch, 2007: Trends in evaporation for the Canadian Prairies. J. Hydrol., 336, 6173, doi:10.1016/j.jhydrol.2006.12.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D. L., G. Gao, C.-Y. Xu, J. Guo, and G. Ren, 2005: Comparison of the Thornthwaite method and pan data with the standard Penman–Monteith estimates of reference evapotranspiration in China. Climate Res., 28, 123132, doi:10.3354/cr028123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., S. C. Pryor, and D. L. Li, 2012: Assessing the performance of Intergovernmental Panel on Climate Change AR5 climate models in simulating and projecting wind speeds over China. J. Geophys. Res., 117, D24102, doi:10.1029/2012JD017533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., J. E. Smerdon, R. Seager, and S. Coats, 2014: Global warming and 21st century drying. Climate Dyn., 43, 26072627, doi:10.1007/s00382-014-2075-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Recent climatology, variability, and trends in global surface humidity. J. Climate, 19, 35893606, doi:10.1175/JCLI3816.1.

  • Dai, A., 2011: Drought under global warming: A review. Wiley Interdiscip. Rev.: Climate Change, 2, 4565, doi:10.1002/wcc.81.

  • Dai, A., 2013: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, doi:10.1038/nclimate1633.

  • Erdin, R., C. Frei, and H. R. Künsch, 2012: Data transformation and uncertainty in geostatistical combination of radar and rain gauges. J. Hydrometeor., 13, 13321346, doi:10.1175/JHM-D-11-096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., S. Blenkinsop, and C. Tebaldi, 2007: Linking climate change modeling to impacts studies: Recent advances in downscaling techniques for hydrological modeling. Int. J. Climatol., 27, 15471578, doi:10.1002/joc.1556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, G., S. P. Charles, and J. Yu, 2009: A critical overview of pan evaporation trends over the last 50 years. Climatic Change, 97, 193214, doi:10.1007/s10584-009-9579-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, and J. Lawrimore, 2004: Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. J. Hydrometeor., 5, 6485, doi:10.1175/1525-7541(2004)005<0064:CCOTHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbins, M., J. Ramirez, and T. Brown, 2004: Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: Paradoxical or complementary? Geophys. Res. Lett., 31, L13503, doi:10.1029/2004GL019846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbins, M., A. Wood, D. Streubel, and K. Werner, 2012: What drives the variability of evaporative demand across the conterminous United States? J. Hydrometeor., 13, 11951214, doi:10.1175/JHM-D-11-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., J. Sheffield, and E. F. Wood, 2010: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res., 115, D10101, doi:10.1029/2009JD012882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., Y. N. Chen, Y. J. Shen, Y. B. Liu, and S. H. Zhang, 2013: Analysis of changing pan evaporation in the arid region of northwest China. Water Resour. Res., 49, 22052212, doi:10.1002/wrcr.20202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liepert, B. G., J. Feichter, U. Lohmann, and E. Roeckner, 2004: Can aerosols spin down the water cycle in a warmer and moister world? Geophys. Res. Lett., 31, L06207, doi:10.1029/2003GL019060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, W. H., M. L. Roderick, M. T. Hobbins, S. C. Wong, and G. D. Farquhar, 2013: The energy balance of a US Class A evaporation pan. Agric. For. Meteor., 182–183, 314331, doi:10.1016/j.agrformet.2013.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, W. H., M. L. Roderick, and G. D. Farquhar, 2016: A mathematical model of pan evaporation under steady state conditions. J. Hydrol., 540, 641658, doi:10.1016/j.jhydrol.2016.06.048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linacre, E. T., 1994: Estimating U.S. Class A pan evaporation from few climate data. Water Int., 19, 514, doi:10.1080/02508069408686189.

  • Liu, B. H., M. Xu, M. Henderson, and W. G. Gong, 2004: A spatial analysis of pan evaporation trends in China, 1955–2000. J. Geophys. Res., 109, D15102, doi:10.1029/2004JD004511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. B., and F. B. Sun, 2016: Assessing estimates of evaporative demand in climate models using observed pan evaporation over China. J. Geophys. Res. Atmos., 121, 83298349, doi:10.1002/2016JD025166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. B., G. B. Fu, C. M. Liu, X. Y. Song, and R. L. Ouyang, 2013: Projection of future rainfall for the North China Plain using two statistical downscaling models and its hydrological implications. Stochastic Environ. Res. Risk Assess., 27, 17831797, doi:10.1007/s00477-013-0714-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. B., A. J. Zhang, L. Wang, G. B. Fu, D. L. Chen, C. M. Liu, and T. J. Cai, 2015: Projecting streamflow in Tangwang River basin (China) using a rainfall generator and two hydrological models. Climate Res., 62, 7997, doi:10.3354/cr01261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X. M., Y. Z. Luo, D. Zhang, M. H. Zhang, and C. M. Liu, 2011: Recent changes in pan-evaporation dynamics in China. Geophys. Res. Lett., 38, L13404, doi:10.1029/2011GL047929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., and H. G. Hidalgo, 2008: Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling methods. Hydrol. Earth Syst. Sci., 12, 551563, doi:10.5194/hess-12-551-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., and Coauthors, 2012: Global review and synthesis of trends in observed terrestrial near-surface wind speed: Implications for evaporation. J. Hydrol., 416–417, 182205, doi:10.1016/j.jhydrol.2011.10.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and K. A. Dunne, 2016: Potential evapotranspiration and continental drying. Nat. Climate Change, 6, 946949, doi:10.1038/nclimate3046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., J. Betancourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P. Lettenmaier, and R. J. Stouffer, 2008: Stationarity is dead: Whither water management? Science, 319, 573574, doi:10.1126/science.1151915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., and G. W. Brier, 1968: Some Application of Statistics to Meteorology. Pennsylvania State University Press, 224 pp.

  • Penman, H. L., 1948: Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. London, 193A, 120145, doi:10.1098/rspa.1948.0037.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., V. S. Golubev, and P. Ya. Grosiman, 1995: Evaporation losing its strength. Nature, 377, 687688, doi:10.1038/377687b0.

  • Roderick, M. L., and G. D. Farquhar, 2002: The cause of decreased pan evaporation over the past 50 years. Science, 298, 14101411, doi:10.1126/science.1075390-a.

    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., and G. D. Farquhar, 2004: Changes in Australian pan evaporation from 1970 to 2002. Int. J. Climatol., 24, 10771090, doi:10.1002/joc.1061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., and G. D. Farquhar, 2005: Changes in New Zealand pan evaporation since the 1970s. Int. J. Climatol., 25, 20312039, doi:10.1002/joc.1262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., L. D. Rotstayn, G. D. Farquha, and M. T. Hobbins, 2007: On the attribution of changing pan evaporation. Geophys. Res. Lett., 34, L17403, doi:10.1029/2007GL031166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., M. T. Hobbins, and G. D. Farquhar, 2009a: Pan evaporation trends and the terrestrial water balance. I. Principles and observations. Geogr. Compass, 3, 746760, doi:10.1111/j.1749-8198.2008.00213.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., M. T. Hobbins, and G. D. Farquhar, 2009b: Pan evaporation trends and the terrestrial water balance. II. Energy balance and interpretation. Geogr. Compass, 3, 761780, doi:10.1111/j.1749-8198.2008.00214.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., P. Greve, and G. D. Farquhar, 2015: On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res., 51, 54505463, doi:10.1002/2015WR017031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., M. L. Roderick, and G. D. Farquhar, 2006: A simple pan-evaporation model for analysis of climate simulations: Evaluation over Australia. Geophys. Res. Lett., 33, L17715, doi:10.1029/2006GL027114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sachindra, D. A., F. Huang, A. Barton, and B. J. C. Perera, 2014: Statistical downscaling of general circulation model outputs to precipitation—part 2: Bias-correction and future projections. Int. J. Climatol., 34, 32823303, doi:10.1002/joc.3915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., E. F. Wood, and M. L. Roderick, 2012: Little change in global drought over the past 60 years. Nature, 491, 435438, doi:10.1038/nature11575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, Y. J., and Coauthors, 2002: Measurement and analysis of evapotranspiration and surface conductance of a wheat canopy. Hydrol. Processes, 16, 21732187, doi:10.1002/hyp.1149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastav, R. K., A. Schardong, and S. P. Simonovic, 2014: Equidistance quantile matching method for updating IDF curves under climate change. Water Resour. Manage., 28, 25392562, doi:10.1007/s11269-014-0626-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanhill, G., and M. Möller, 2008: Evaporative climate change in the British Isles. Int. J. Climatol., 28, 11271137, doi:10.1002/joc.1619.

  • Storelvmo, T., T. Leirvik, U. Lohmann, P. C. B. Phillips, and M. Wild, 2016: Disentangling greenhouse warming and aerosol cooling to reveal Earth’s climate sensitivity. Nat. Geosci., 9, 286289, doi:10.1038/ngeo2670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, A. L. S., F. M. Hoffman, C. D. Koven, and J. T. Randerson, 2016: Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl. Acad. Sci. USA, 113, 10 01910 024, doi:10.1073/pnas.1604581113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tebakari, T. J., J. Yoshitani, and C. Suvanpimol, 2005: Time–space trend analysis in pan evaporation over Kingdom of Thailand. J. Hydrol. Eng., 10, 205215, doi:10.1061/(ASCE)1084-0699(2005)10:3(205).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thom, A. S., J. L. Thony, and M. Vauclin, 1981: On the proper employment of evaporation pans and atmometers in estimating potential transpiration. Quart. J. Roy. Meteor. Soc., 107, 711736, doi:10.1002/qj.49710745316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Schaeybroeck, B., and S. Vannitsem, 2016: Assessment of calibration assumptions under strong climate changes. Geophys. Res. Lett., 43, 13141322, doi:10.1002/2016GL067721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2014: The European climate under a 2°C global warming. Environ. Res. Lett., 9, 034006, doi:10.1088/1748-9326/9/3/034006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., and Coauthors, 2014: Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ. Res. Lett., 9, 044001, doi:10.1088/1748-9326/9/4/044001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., Q. Wang, Y. Zhao, H. Li, J. Zhai, and Y. Shang, 2015: Temporal and spatial characteristics of pan evaporation trends and their attribution to meteorological drivers in the Three-River Source Region, China. J. Geophys. Res. Atmos., 120, 63916408, doi:10.1002/2014JD022874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K. C., R. E. Dickinson, and S. L. Liang, 2012: Global atmospheric evaporative demand over land from 1973–2008. J. Climate, 25, 83538361, doi:10.1175/JCLI-D-11-00492.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2014: A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. Int. J. Climatol., 34, 20592078, doi:10.1002/joc.3822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W. G., and Coauthors, 2013: Changes in reference evapotranspiration across the Tibetan Plateau: Observations and future projections based on statistical downscaling. J. Geophys. Res. Atmos., 118, 40494068, doi:10.1002/jgrd.50393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcke, R. A. I., T. Mendlik, and A. Gobiet, 2013: Multi-variable error correction of regional climate models. Climatic Change, 120, 871887, doi:10.1007/s10584-013-0845-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., and B. Liepert, 2010: The earth radiation balance as driver of the global hydrological cycle. Environ. Res. Lett., 5, 025203, doi:10.1088/1748-9326/5/2/025203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., A. Ohmura, H. Gilgen, E. Roeckner, M. Giorgetta, and J.-J. Morcrette, 1998: The disposition of radiative energy in the global climate system: GCM-calculated versus observational estimates. Climate Dyn., 14, 853869, doi:10.1007/s003820050260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2012: Stochastic weather generators for climate-change downscaling, part II: Multivariable and spatially coherent multisite downscaling. Wiley Interdiscip. Rev.: Climate Change, 3, 267278, doi:10.1002/wcc.167.

    • Search Google Scholar
    • Export Citation
  • Xu, C. H., and Y. Xu, 2012: The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble. Atmos. Ocean. Sci. Lett., 5 (6), 427433.

    • Search Google Scholar
    • Export Citation
  • Xu, Y. P., S. L. Pan, G. T. Fu, Y. Tian, and X. J. Zhang, 2014: Future potential evapotranspiration changes and contribution analysis in Zhejiang Province, east China. J. Geophys. Res. Atmos., 118, 21742196, doi:10.1002/2013JD021245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, B., D. Yang, and J. Li, 2012: Effect of precipitation bias correction on water budget calculation in Upper Yellow River, China. Environ. Res. Lett., 7, 02520, doi:10.1088/1748-9326/7/2/025201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, Y. H., D. Y. Ma, S. H. Wu, and T. Pan, 2015: Projections of aridity and its regional variability over China in the mid-21st century. Int. J. Climatol., 35, 43874398, doi:10.1002/joc.4295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., C. Liu, Y. Tang, and Y. Yang, 2007: Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan plateau. J. Geophys. Res., 112, D12110, doi:10.1029/2006JD008161.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 5 5 5

Projecting and Attributing Future Changes of Evaporative Demand over China in CMIP5 Climate Models

View More View Less
  • 1 Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
  • | 2 Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, and College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, and School of Civil Engineering, Hexi University, Zhangye City, China
Restricted access

Abstract

Atmospheric evaporative demand plays a pivotal role in global water and energy budgets, and its change is very important for drought monitoring, irrigation scheduling, and water resource management under a changing environment. Here, future changes of pan evaporation Epan, a measurable indicator for atmospheric evaporative demand, are first projected and attributed over China through a physically based approach, namely, the PenPan model, forced with outputs from 12 state-of-the-art climate models from phase 5 of the Coupled Model Intercomparison Project. An equidistant quantile mapping method was also used to correct the biases in GCMs outputs to reduce uncertainty in Epan projection. The results indicated that Epan would increase during the periods 2021–50 and 2071–2100 relative to the baseline period 1971–2000 under the representative concentration pathway (RCP) 4.5 and 8.5 scenarios, which can mainly be attributed to the projected increase in air temperature and vapor pressure deficit over China. The percentage increase of Epan is relatively larger in eastern China than in western China, which is due to the spatially inconsistent increases in air temperature, net radiation, wind speed, and vapor pressure deficit over China. The widely reported “pan evaporation paradox” was not well reproduced for the period 1961–2000 in the climate models, before or after bias correction, suggesting discrepancy between observed and modeled trends. With that caveat, it was found that the pan evaporation has been projected to increase at a rate of 117–167 mm yr−1 K−1 (72–80 mm yr−1 K−1) over China using the multiple GCMs under the RCP 4.5 (RCP 8.5) scenario with increased greenhouse gases and the associated warming of the climate system.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0204.s1.

Corresponding author e-mail: Fubao Sun, sunfb@igsnrr.ac.cn

Abstract

Atmospheric evaporative demand plays a pivotal role in global water and energy budgets, and its change is very important for drought monitoring, irrigation scheduling, and water resource management under a changing environment. Here, future changes of pan evaporation Epan, a measurable indicator for atmospheric evaporative demand, are first projected and attributed over China through a physically based approach, namely, the PenPan model, forced with outputs from 12 state-of-the-art climate models from phase 5 of the Coupled Model Intercomparison Project. An equidistant quantile mapping method was also used to correct the biases in GCMs outputs to reduce uncertainty in Epan projection. The results indicated that Epan would increase during the periods 2021–50 and 2071–2100 relative to the baseline period 1971–2000 under the representative concentration pathway (RCP) 4.5 and 8.5 scenarios, which can mainly be attributed to the projected increase in air temperature and vapor pressure deficit over China. The percentage increase of Epan is relatively larger in eastern China than in western China, which is due to the spatially inconsistent increases in air temperature, net radiation, wind speed, and vapor pressure deficit over China. The widely reported “pan evaporation paradox” was not well reproduced for the period 1961–2000 in the climate models, before or after bias correction, suggesting discrepancy between observed and modeled trends. With that caveat, it was found that the pan evaporation has been projected to increase at a rate of 117–167 mm yr−1 K−1 (72–80 mm yr−1 K−1) over China using the multiple GCMs under the RCP 4.5 (RCP 8.5) scenario with increased greenhouse gases and the associated warming of the climate system.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0204.s1.

Corresponding author e-mail: Fubao Sun, sunfb@igsnrr.ac.cn

Supplementary Materials

    • Supplemental Materials (DOCX 79.89 KB)
Save