• Andreadis, K. M., E. A. Clark, A. W. Wood, A. F. Hamlet, and D. P. Lettenmaier, 2005: Twentieth-century drought in the conterminous United States. J. Hydrometeor., 6, 9851001, doi:10.1175/JHM450.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badgley, G., J. B. Fisher, C. Jiménez, K. P. Tu, and R. Vinukollu, 2015: On uncertainty in global terrestrial evapotranspiration estimates from choice of input forcing datasets. J. Hydrometeor., 16, 14491455, doi:10.1175/JHM-D-14-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barman, R., A. K. Jain, and M. Liang, 2014: Climate-driven uncertainties in modeling terrestrial energy and water fluxes: A site-level to global-scale analysis. Global Change Biol., 20, 18851900, doi:10.1111/gcb.12473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, M., and Coauthors, 2015: The plumbing of land surface models: Benchmarking model performance. J. Hydrometeor., 16, 14251442, doi:10.1175/JHM-D-14-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., and N. C. Coops, 2009: Understanding of coupled terrestrial carbon, nitrogen and water dynamics—An overview. Sensors, 9, 86248657, doi:10.3390/s91108624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., J. M. Chen, and W. Ju, 2007a: Remote sensing–based ecosystem–atmosphere simulation scheme (EASS)—Model formulation and test with multiple-year data. Eco. Modell., 209, 277300, doi:10.1016/j.ecolmodel.2007.06.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., J. M. Chen, G. Mo, C.-W. Yuen, H. Margolis, K. Higuchi, and D. Chan, 2007b: Modeling and scaling coupled energy, water, and carbon fluxes based on remote sensing: An application to Canada’s landmass. J. Hydrometeor., 8, 123143, doi:10.1175/JHM566.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and Coauthors, 2013: Comparison of terrestrial evapotranspiration estimates using the mass transfer and Penman–Monteith equations in land surface models. J. Geophys. Res. Biogeosci., 118, 17151731, doi:10.1002/2013JG002446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and Coauthors, 2014: Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China. Remote Sens. Environ., 140, 279293, doi:10.1016/j.rse.2013.08.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y.-Y., K. Yang, J. He, J. Qin, J. Shi, J. Du, and Q. He, 2011: Improving land surface temperature modeling for dry land of China. J. Geophys. Res., 116, D20104, doi:10.1029/2011JD015921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cleugh, H. A., R. Leuning, Q. Mu, and S. W. Running, 2007: Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens. Environ., 106, 285304, doi:10.1016/j.rse.2006.07.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Decker, M., A. Pitman, and J. Evans, 2015: Diagnosing the seasonal land–atmosphere correspondence over northern Australia: Dependence on soil moisture state and correspondence strength definition. Hydrol. Earth Syst. Sci., 19, 34333447, doi:10.5194/hess-19-3433-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., X. Gao, M. Zhao, Z. Guo, T. Oki, and N. Hanasaki, 2006: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 13811397, doi:10.1175/BAMS-87-10-1381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., and A. Dai, 2017: The uncertainties and causes of the recent changes in global evapotranspiration from 1982 to 2010. Climate Dyn., doi:10.1007/s00382-016-3342-x, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ershadi, A., M. McCabe, J. P. Evans, N. W. Chaney, and E. F. Wood, 2014: Multi-site evaluation of terrestrial evaporation models using FLUXNET data. Agric. For. Meteor., 187, 4661, doi:10.1016/j.agrformet.2013.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., C. J. Vörösmarty, and W. Grabs, 2002: High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles, 16, 1042, doi:10.1029/1999GB001254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., E. F. Wood, and R. K. Vinukollu, 2012: A global intercomparison of modeled and observed land–atmosphere coupling. J. Hydrometeor., 13, 749784, doi:10.1175/JHM-D-11-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, J. B., K. P. Tu, and D. D. Baldocchi, 2008: Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ., 112, 901919, doi:10.1016/j.rse.2007.06.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foken, T., 2008: The energy balance closure problem: An overview. Ecol. Appl., 18, 13511367, doi:10.1890/06-0922.1.

  • Friedl, M. A., and Coauthors, 2002: Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ., 83, 287302, doi:10.1016/S0034-4257(02)00078-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, G., D. Chen, C. Y. Xu, and E. Simelton, 2007: Trend of estimated actual evapotranspiration over China during 1960–2002. J. Geophys. Res., 112, D11120, doi:10.1029/2006JD008010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y. H., X. Li, L. R. Leung, D. L. Chen, and J. W. Xu, 2015: Aridity changes in the Tibetan Plateau in a warming climate. Environ. Res. Lett., 10, 034013, doi:10.1088/1748-9326/10/3/034013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, D.-X., J.-B. Wu, X.-S. Zhao, S.-J. Han, G.-R. Yu, X.-M. Sun, and C.-J. Jin, 2006: CO2 fluxes over an old, temperate mixed forest in northeastern China. Agric. For. Meteor., 137, 138149, doi:10.1016/j.agrformet.2006.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, D., and H. Wang, 2013: Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981–2010. J. Geophys. Res. Atmos., 118, 52165230, doi:10.1002/jgrd.50457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks Franssen, H. J., R. Stöckli, I. Lehner, E. Rotenberg, and S. I. Seneviratne, 2011: Energy balance closure of eddy-covariance data: A multisite analysis for European FLUXNET stations. Agric. For. Meteor., 150, 15531567, doi:10.1016/j.agrformet.2010.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, M., J. Ji, K. Li, Y. Liu, F. Yang, and B. Tao, 2007: The ecosystem carbon accumulation after conversion of grasslands to pine plantations in subtropical red soil of south China. Tellus, 59B, 439448, doi:10.1111/j.1600-0889.2007.00280.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, C., C. Prigent, and F. Aires, 2009: Toward an estimation of global land surface heat fluxes from multisatellite observations. J. Geophys. Res., 114, D06305, doi:10.1029/2008JD011392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, C., and Coauthors, 2011: Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res., 116, D02102, doi:10.1029/2010JD014545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jun, X., and Y. D. Chen, 2001: Water problems and opportunities in the hydrological sciences in China. Hydrol. Sci. J., 46, 907921, doi:10.1080/02626660109492885.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, M., M. Reichstein, and A. Bondeau, 2009: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 20012013, doi:10.5194/bg-6-2001-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, doi:10.1038/nature09396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2011: Global patterns of land–atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res., 116, G00J07, doi:10.1029/2010JG001566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalma, J. D., T. R. McVicar, and M. F. McCabe, 2008: Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys., 29, 421469, doi:10.1007/s10712-008-9037-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katul, G. G., R. Oren, S. Manzoni, C. Higgins, and M. B. Parlange, 2012: Evapotranspiration: A process driving mass transport and energy exchange in the soil–plant–atmosphere–climate system. Rev. Geophys., 50, 185201, doi:10.1029/2011RG000366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006: World map of the Köppen–Geiger climate classification updated. Meteor. Z., 15, 259263, doi:10.1127/0941-2948/2006/0130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, X. X., and J. J. Jiao, 2016: Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res. Atmos., 121, 39794007, doi:10.1002/2015JD024728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, doi:10.1029/2011MS00045.

    • Search Google Scholar
    • Export Citation
  • Li, X., and Coauthors, 2014: Estimation of evapotranspiration over the terrestrial ecosystems in China. Ecohydrology, 7, 139149, doi:10.1002/eco.1341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., G. Yu, X. Wen, L. Zhang, C. Ren, and Y. Fu, 2005: Energy balance closure at ChinaFLUX sites. Sci. China Ser. D., 48, 5162.

  • Liang, S., K. Wang, X. Zhang, and M. Wild, 2010: Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 3, 225240, doi:10.1109/JSTARS.2010.2048556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, and E. F. Wood, 1996: One‐dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two‐layer variable infiltration capacity model. J. Geophys. Res., 101, 21 40321 422, doi:10.1029/96JD01448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., and J. Diamond, 2005: China’s environment in a globalizing world. Nature, 435, 11791186, doi:10.1038/4351179a.

  • Liu, J., and Z.-H. Xie, 2013: Improving simulation of soil moisture in China using a multiple meteorological forcing ensemble approach. Hydrol. Earth Syst. Sci., 17, 33553369, doi:10.5194/hess-17-3355-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., B. Jia, Z. Xie, and C. Shi, 2016: Ensemble simulation of land evapotranspiration in China based on a multi-forcing and multi-model approach. Adv. Atmos. Sci., 33, 673684, doi:10.1007/s00376-016-5213-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, M., H. Tian, C. Lu, X. Xu, G. Chen, and W. Ren, 2012a: Effects of multiple environment stresses on evapotranspiration and runoff over eastern China. J. Hydrol., 426–427, 3954, doi:10.1016/j.jhydrol.2012.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, R., Y. Li, and Q. X. Wang, 2012b: Variations in water and CO2 fluxes over a saline desert in western China. Hydrol. Processes, 26, 513522, doi:10.1002/hyp.8147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and Coauthors, 2015: Evapotranspiration in northern Eurasia: Impact of forcing uncertainties on terrestrial ecosystem model estimates. J. Geophys. Res. Atmos., 120, 26472660, doi:10.1002/2014JD022531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, D., L. Longuevergne, and B. R. Scanlon, 2014: Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res., 50, 11311151, doi:10.1002/2013WR014581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mao, J., and Coauthors, 2015: Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends. Environ. Res. Lett., 10, 094008, doi:10.1088/1748-9326/10/9/094008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, X., S. Liu, Z. Lin, S. Wang, and S. Hu, 2015: Trends in land surface evapotranspiration across China with remotely sensed NDVI and climatological data for 1981–2010. Hydrol. Sci. J., 60, 21632177, doi:10.1080/02626667.2014.950579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteith, J., 1965: Evaporation and environment. Symp. Soc. Exp. Biol., 19, 205234.

  • Mu, Q., F. A. Heinsch, M. Zhao, and S. W. Running, 2007: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ., 111, 519536, doi:10.1016/j.rse.2007.04.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mu, Q., M. Zhao, and S. W. Running, 2011: Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ., 115, 17811800, doi:10.1016/j.rse.2011.02.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2011: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett., 38, L06402, doi:10.1029/2010GL046230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2013: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrol. Earth Syst. Sci., 17, 37073720, doi:10.5194/hess-17-3707-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oki, T., and S. Kanae, 2006: Global hydrological cycles and world water resources. Science, 313, 10681072, doi:10.1126/science.1128845.

  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp., doi:10.5065/D6FB50WZ.

    • Crossref
    • Export Citation
  • Pan, S., and Coauthors, 2015: Responses of global terrestrial evapotranspiration to climate change and increasing atmospheric CO2 in the 21st century. Earth’s Future, 3, 1535, doi:10.1002/2014EF000263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piao, S., P. Friedlingstein, P. Ciais, N. de Noblet-Ducoudré, D. Labat, and S. Zaehle, 2007: Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl. Acad. Sci. USA, 104, 15 24215 247, doi:10.1073/pnas.0707213104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polhamus, A., J. B. Fisher, and K. P. Tu, 2013: What controls the error structure in evapotranspiration models? Agric. For. Meteor., 169, 1224, doi:10.1016/j.agrformet.2012.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, J., 2008: China: The third pole. Nat. News, 454, 393396.

  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shangguan, W., and Coauthors, 2013: A China data set of soil properties for land surface modeling. J. Adv. Model. Earth Syst., 5, 212224, doi:10.1002/jame.20026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and E. F. Wood, 2008: Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J. Climate, 21, 432458, doi:10.1175/2007JCLI1822.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepard, D. S., 1984: Computer mapping: The SYMAP interpolation algorithm. Spatial Statistics and Models, G. L. Gaile and C. J. Willmott, Eds., D. Reidel, 133–145.

    • Crossref
    • Export Citation
  • Shi, X.-Y., J. Mao, P. E. Thornton, and M. Huang, 2013: Spatiotemporal patterns of evapotranspiration in response to multiple environmental factors simulated by the Community Land Model. Environ. Res. Lett., 8, 024012, doi:10.1088/1748-9326/8/2/024012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X.-Z., D. S. Yu, E. D. Warner, X. Z. Pan, G. W. Petersen, Z. G. Gong, and D. C. Weindorf, 2004: Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system. Soil Horiz., 45, 129136, doi:10.2136/sh2004.4.0129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., and Coauthors, 2016a: Improving soil organic carbon parameterization of land surface model for cold regions in the northeastern Tibetan Plateau, China. Ecol. Modell., 330, 115, doi:10.1016/j.ecolmodel.2016.03.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., B. Chen, J. Chen, M. Che, and H. Zhang, 2016b: Comparison of remotely-sensed and modeled soil moisture using CLM4.0 with in situ measurements in the central Tibetan Plateau area. Cold Reg. Sci. Technol., 129, 3144, doi:10.1016/j.coldregions.2016.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, S., D. Lawrence, and H. Lee, 2012: Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model. J. Adv. Model. Earth Syst., 4, M08002, doi:10.1029/2012MS000165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, A., 2008: Development and properties of 0.25-degree gridded evapotranspiration data fields of China for hydrological studies. J. Hydrol., 358, 145158, doi:10.1016/j.jhydrol.2008.05.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311323, doi:10.1175/2008BAMS2634.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ukkola, A., A. Pitman, M. Decker, M. De Kauwe, G. Abramowitz, J. Kala, and Y. Wang, 2015: Modelling evapotranspiration during precipitation deficits: Identifying critical processes in a land surface model. Hydrol. Earth Syst. Sci. Discuss., 12, 10 78910 825, doi:10.5194/hessd-12-10789-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vano, J. A., T. Das, and D. P. Lettenmaier, 2012: Hydrologic sensitivities of Colorado River runoff to changes in precipitation and temperature. J. Hydrometeor., 13, 932949, doi:10.1175/JHM-D-11-069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinukollu, R. K., E. F. Wood, C. R. Ferguson, and J. B. Fisher, 2011: Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sens. Environ., 115, 801823, doi:10.1016/j.rse.2010.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinukollu, R. K., J. Sheffield, E. F. Wood, M. G. Bosilovich, and D. Mocko, 2012: Multimodel analysis of energy and water fluxes: Intercomparisons between operational analyses, a land surface model, and remote sensing. J. Hydrometeor., 13, 326, doi:10.1175/2011JHM1372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Bao, B. Hoskins, G. Wu, and Y. Liu, 2008: Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett., 35, L14702, doi:10.1029/2008GL034330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K., and R. E. Dickinson, 2012: A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys., 50, RG2005, doi:10.1029/2011RG000373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K., R. E. Dickinson, M. Wild, and S. Liang, 2010: Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 1. Model development. J. Geophys. Res., 115, D20112, doi:10.1029/2009JD013671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., Y. Yang, Y. Luo, and A. Rivera, 2013: Spatial and seasonal variations in evapotranspiration over Canada’s landmass. Hydrol. Earth Syst. Sci., 17, 35613575, doi:10.5194/hess-17-3561-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and Coauthors, 2015: Comparing evapotranspiration from eddy covariance measurements, water budgets, remote sensing, and land surface models over Canada. J. Hydrometeor., 16, 15401560, doi:10.1175/JHM-D-14-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, H., Q. Yu, Z.-C. Zhu, R. B. Myneni, H.-M. Yan, S.-Q. Wang, and H. H. Shugart, 2013: Diagnostic analysis of interannual variation of global land evapotranspiration over 1982–2011: Assessing the impact of ENSO. J. Geophys. Res. Atmos., 118, 89698983, doi:10.1002/jgrd.50693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., J. He, W. Tang, J. Qin, and C. C. Cheng, 2010: On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteor., 150, 3846, doi:10.1016/j.agrformet.2009.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., H. Wu, J. Qin, C. Lin, W. Tang, and Y. Chen, 2014: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global Planet. Change, 112, 7991, doi:10.1016/j.gloplacha.2013.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2012: Third pole environment (TPE). Environ. Dev., 3, 5264, doi:10.1016/j.envdev.2012.04.002.

  • Yin, Y. H., S. H. Wu, and D. S. Zhao, 2013a: Past and future spatiotemporal changes in evapotranspiration and effective moisture on the Tibetan Plateau. J. Geophys. Res. Atmos., 118, 10 85010 860, doi:10.1002/jgrd.50858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, Y. H., S. H. Wu, D. S. Zhao, D. Zheng, and T. Pan, 2013b: Modeled effects of climate change on actual evapotranspiration in different eco-geographical regions in the Tibetan Plateau. J. Geogr. Sci., 23, 195207, doi:10.1007/s11442-013-1003-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, G.-R., X.-F. Wen, X.-M. Sun, B. D. Tanner, X. H. Lee, and J.-Y. Chen, 2006: Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agric. For. Meteor., 137, 125137, doi:10.1016/j.agrformet.2006.02.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Z., S. Piao, X. Lin, G. Yin, S. Peng, P. Ciais, and R. B. Myneni, 2012: Global evapotranspiration over the past three decades: Estimation based on the water balance equation combined with empirical models. Environ. Res. Lett., 7, 014026, doi:10.1088/1748-9326/7/1/014026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, C., J. Yin, F. Wang, and Q. Dong, 2015: Regional estimation and validation of remotely sensed evapotranspiration in China. Catena, 133, 3542, doi:10.1016/j.catena.2015.04.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, K., J. S. Kimball, R. R. Nemani, and S. W. Running, 2010: A continuous satellite‐derived global record of land surface evapotranspiration from 1983 to 2006. Water Resour. Res., 46, W09522, doi:10.1029/2009WR008800.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X.-J., Q. Tang, M. Pan, and Y. Tang, 2014: A long-term land surface hydrologic fluxes and states dataset for China. J. Hydrometeor., 15, 20672084, doi:10.1175/JHM-D-13-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Coauthors, 2016: Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep., 6, 19 124, doi:10.1038/srep19124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, G., and Coauthors, 2011: Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China. Global Change Biol., 17, 37363746, doi:10.1111/j.1365-2486.2011.02499.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 16 16 16
PDF Downloads 5 5 5

Modeling Evapotranspiration over China’s Landmass from 1979 to 2012 Using Multiple Land Surface Models: Evaluations and Analyses

View More View Less
  • 1 State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
  • | 2 University of Chinese Academy of Sciences, Beijing, China
  • | 3 School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
  • | 4 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
  • | 5 Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
  • | 6 Beijing Meteorological Bureau, Beijing, China
  • | 7 Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
Restricted access

Abstract

Land surface models (LSMs) are useful tools to estimate land evapotranspiration at a grid scale and for long-term applications. Here, the Community Land Model, version 4.0 (CLM4.0); Dynamic Land Model (DLM); and Variable Infiltration Capacity model (VIC) were driven with observation-based forcing datasets, and a multiple-LSM ensemble-averaged evapotranspiration (ET) product (LSMs-ET) was developed and its spatial–temporal variations were analyzed for the China landmass over the period 1979–2012. Evaluations against measurements from nine flux towers at site scale and surface water budget–based ET at regional scale showed that the LSMs-ET had good performance in most areas of China’s landmass. The intercomparisons between the ET estimates and the independent ET products from remote sensing and upscaling methods suggested that there were fairly consistent patterns between each dataset. The LSMs-ET produced a mean annual ET of 351.24 ± 10.7 mm yr−1 over 1979–2012, and its spatial–temporal variation analyses showed that (i) there was an overall significant ET increasing trend, with a value of 0.72 mm yr−1 (p < 0.01), and (ii) 36.01% of Chinese land had significant increasing trends, ranging from 1 to 9 mm yr−1, while only 6.41% of the area showed significant decreasing trends, ranging from −6.28 to −0.08 mm yr−1. Analyses of ET variations in each climate region clearly showed that the Tibetan Plateau areas were the main contributors to the overall increasing ET trends of China.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Baozhang Chen, baozhang.chen@igsnrr.ac.cn

Abstract

Land surface models (LSMs) are useful tools to estimate land evapotranspiration at a grid scale and for long-term applications. Here, the Community Land Model, version 4.0 (CLM4.0); Dynamic Land Model (DLM); and Variable Infiltration Capacity model (VIC) were driven with observation-based forcing datasets, and a multiple-LSM ensemble-averaged evapotranspiration (ET) product (LSMs-ET) was developed and its spatial–temporal variations were analyzed for the China landmass over the period 1979–2012. Evaluations against measurements from nine flux towers at site scale and surface water budget–based ET at regional scale showed that the LSMs-ET had good performance in most areas of China’s landmass. The intercomparisons between the ET estimates and the independent ET products from remote sensing and upscaling methods suggested that there were fairly consistent patterns between each dataset. The LSMs-ET produced a mean annual ET of 351.24 ± 10.7 mm yr−1 over 1979–2012, and its spatial–temporal variation analyses showed that (i) there was an overall significant ET increasing trend, with a value of 0.72 mm yr−1 (p < 0.01), and (ii) 36.01% of Chinese land had significant increasing trends, ranging from 1 to 9 mm yr−1, while only 6.41% of the area showed significant decreasing trends, ranging from −6.28 to −0.08 mm yr−1. Analyses of ET variations in each climate region clearly showed that the Tibetan Plateau areas were the main contributors to the overall increasing ET trends of China.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Baozhang Chen, baozhang.chen@igsnrr.ac.cn
Save