• Barlage, M., and Coauthors, 2010: Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains. J. Geophys. Res., 115, D22101, doi:10.1029/2009JD013470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, doi:10.1038/nature04141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blöschl, G., 1999: Scaling issues in snow hydrology. Hydrol. Processes, 13, 21492175, doi:10.1002/(SICI)1099-1085(199910)13:14/15<2149::AID-HYP847>3.0.CO;2-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brasnett, B., 1999: A global analysis for snow depth for numerical weather prediction. J. Appl. Meteor., 38, 726740, doi:10.1175/1520-0450(1999)038<0726:AGAOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. D., and B. Brasnett, 2010: Canadian Meteorological Centre (CMC) daily snow depth analysis data, version 1. Updated daily, NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 6 January 2017, doi:10.5067/W9FOYWH0EQZ3.

    • Crossref
    • Export Citation
  • Brown, R. D., B. Brasnett, and D. Robinson, 2003: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos.–Ocean, 41, 114, doi:10.3137/ao.410101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, X., Z.-L. Yang, Y. Xia, M. Huang, H. Wei, L. R. Leung, and M. B. Ek, 2014: Assessment of simulated water balance from Noah, Noah-MP, CLM, and VIC over CONUS using the NLDAS test bed. J. Geophys. Res. Atmos., 119, 13 75113 770, doi:10.1002/2014JD022113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, P., H.-N. S. Chin, D. C. Bader, and G. Bala, 2009: Evaluation of a WRF dynamical downscaling simulation over California. Climatic Change, 95, 499521, doi:10.1007/s10584-009-9583-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, S. S., and N. Cressie, 1997: Spatial modeling of snow water equivalent using covariances estimated from spatial and geomorphic attributes. J. Hydrol., 190, 4259, doi:10.1016/S0022-1694(96)03062-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, T., D. Cline, G. Fall, A. Nilsson, L. Li, and A. Rost, 2001: NOHRSC operations and the simulation of snow cover properties for the conterminous U.S. Proc. 69th Annual Meeting of the Western Snow Conf., Sun Valley, ID, Western Snow Conference, 14 pp. [Available online at www.westernsnowconference.org/sites/westernsnowconference.org/PDFs/2001Carroll.pdf.]

  • Chen, F., and Coauthors, 2014: Modeling seasonal snowpack evolution in the complex terrain and forested Colorado Headwaters region: A model intercomparison study. J. Geophys. Res. Atmos., 119, 13 79513 819, doi:10.1002/2014JD022167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M. P., and Coauthors, 2011: Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review. Water Resour. Res., 47, W07539, doi:10.1029/2011WR010745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cline, D. W., R. C. Bales, and J. Dozier, 1998: Estimating the spatial distribution of snow in mountain basins using remote sensing and energy balance modeling. Water Resour. Res., 34, 12751285, doi:10.1029/97WR03755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clow, D. W., L. Nanus, K. L. Verdin, and J. Schmidt, 2012: Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA. Hydrol. Processes, 26, 25832591, doi:10.1002/hyp.9385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Done, J., C. A. Davis, and M. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the weather research and forecasting (WRF) model. Atmos. Sci. Lett., 5, 110117, doi:10.1002/asl.72.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dozier, J., E. H. Bair, and R. E. Davis, 2016: Estimating the spatial distribution of snow water equivalent in the world’s mountains. Wiley Interdiscip. Rev.:Water, 3, 461474, doi:10.1002/wat2.1140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durand, M., and S. A. Margulis, 2007: Correcting first-order errors in snow water equivalent estimates using a multifrequency, multiscale radiometric data assimilation scheme. J. Geophys. Res., 112, D13121, doi:10.1029/2006JD008067.

    • Search Google Scholar
    • Export Citation
  • Durand, M., E. J. Kim, and S. A. Margulis, 2009: Radiance assimilation shows promise for snowpack characterizations. Geophys. Res. Lett., 36, L02503, doi:10.1029/2008GL035214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutra, E., G. Balsamo, P. Viterbo, P. M. A. Miranda, A. Beljaars, C. Schär, and K. Elder, 2010: An improved snow scheme for the ECMWF land surface model: Description and offline validation. J. Hydrometeor., 11, 899916, doi:10.1175/2010JHM1249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutra, E., S. Kotlarski, P. Viterbo, G. Balsamo, P. M. A. Miranda, C. Schär, P. Bissolli, and T. Jonas, 2011: Snow cover sensitivity to horizontal resolution, parameterizations, and atmospheric forcing in a land surface model. J. Geophys. Res., 116, D21109, doi:10.1029/2011JD016061.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Essery, R., and Coauthors, 2009: SNOWMIP2: An evaluation of forest snow process simulations. Bull. Amer. Meteor. Soc., 90, 11201135, doi:10.1175/2009BAMS2629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Etchevers, P., and Coauthors, 2004: Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project). Ann. Glaciol., 38, 150158, doi:10.3189/172756404781814825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., and Coauthors, 2011: Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett., 38, L03403, doi:10.1029/2010GL046442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fassnacht, S. R., K. A. Dressler, and R. C. Bales, 2003: Snow water equivalent interpolation for the Colorado River Basin from snow telemetry (SNOTEL) data. Water Resour. Res., 39, 1208, doi:10.1029/2002WR001512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Girotto, M., S. A. Margulis, and M. Durand, 2014: Probabilistic SWE reanalysis as a generalization of deterministic SWE reconstruction techniques. Hydrol. Processes, 28, 38753895, doi:10.1002/hyp.9887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., N. P. Molotch, D. E. Waliser, S. M. Jepsen, T. H. Painter, and J. Dozier, 2013: Snow water equivalent in the Sierra Nevada: Blending snow sensor observations with snowmelt model simulations. Water Resour. Res., 49, 50295046, doi:10.1002/wrcr.20387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., and Coauthors, 2004: Emissions pathways, climate change, and impacts on California. Proc. Natl. Acad. Sci. USA, 101, 12 42212 427, doi:10.1073/pnas.0404500101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hedrick, A., H.-P. Marshall, A. Winstral, K. Elder, S. Yueh, and D. Cline, 2015: Independent evaluation of the SNODAS snow depth product using regional-scale lidar-derived measurements. Cryosphere, 9, 1323, doi:10.5194/tc-9-13-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howat, I. M., and S. Tulaczyk, 2005: Climate sensitivity of spring snowpack in the Sierra Nevada. J. Geophys. Res., 110, F04021, doi:10.1029/2005JF000356.

    • Search Google Scholar
    • Export Citation
  • Ikeda, K., and Coauthors, 2010: Simulation of seasonal snowfall over Colorado. Atmos. Res., 97, 462477, doi:10.1016/j.atmosres.2010.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Jin, J., and N. L. Miller, 2011: Improvement of snowpack simulations in a regional climate model. Hydrol. Processes, 25, 22022210, doi:10.1002/hyp.7975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, R., 1991: A one-dimensional temperature model for a snow cover: Technical documentation for SNTERERM.89. Special Rep. 91-16, Cold Region Research and Engineers Laboratory, U.S. Army Corps of Engineers, Hanover, NH, 61 pp.

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165–170.

    • Crossref
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapnick, S., and A. Hall, 2010: Observed climate–snowpack relationships in California and their implications for the future. J. Climate, 23, 34463456, doi:10.1175/2010JCLI2903.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapnick, S., and T. L. Delworth, 2013: Controls of global snow under a changed climate. J. Climate, 26, 55375562, doi:10.1175/JCLI-D-12-00528.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keighton, S., and Coauthors, 2009: A collaborative approach to study northwest flow snow in the Southern Appalachians. Bull. Amer. Meteor. Soc., 90, 979991, doi:10.1175/2009BAMS2591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kienzle, S. W., 2008: A new temperature based method to separate rain and snow. Hydrol. Processes, 22, 50675085, doi:10.1002/hyp.7131.

  • Koster, R. D., and M. J. Suarez, 1994: The components of a SVAT scheme and their effects on a GCM’s hydrological cycle. Adv. Water Resour., 17, 6178, doi:10.1016/0309-1708(94)90024-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 1996: Energy and water balance calculations in the Mosaic LSM. NASA Tech. Memo. 104606, Vol. 9, 60 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Koster130.pdf.]

  • Lettenmaier, D. P., D. Alsdorf, J. Dozier, G. J. Huffman, M. Pan, and E. F. Wood, 2015: Inroads of remote sensing into hydrologic science during the WRR era. Water Resour. Res., 51, 73097342, doi:10.1002/2015WR017616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and Y. Qian, 2003: The sensitivity of precipitation and snowpack simulations to model resolution via nesting in regions of complex terrain. J. Hydrometeor., 4, 10251043, doi:10.1175/1525-7541(2003)004<1025:TSOPAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, doi:10.1029/94JD00483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., Y. Xia, K. E. Mitchell, M. B. Ek, and D. P. Lettenmaier, 2010: Noah LSM snow model diagnostics and enhancements. J. Hydrometeor., 11, 721738, doi:10.1175/2009JHM1174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, J. C.-F., Z.-L. Yang, and R. A. Pielke Sr., 2008: Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) Model. J. Geophys. Res., 113, D09112, doi:10.1029/2007JD009216.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., P. J. Neiman, B. Martner, A. B. White, D. J. Gottas, and F. M. Ralph, 2008: Rain versus snow in the Sierra Nevada, California: Comparing Doppler profiling radar and surface observations of melting level. J. Hydrometeor., 9, 194211, doi:10.1175/2007JHM853.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., S. E. Dickerson-Lange, J. A. Lutz, and N. C. Cristea, 2013: Lower forest density enhances snow retention in regions with warmer winters: A global framework developed from plot-scale observations and modeling. Water Resour. Res., 49, 63566370, doi:10.1002/wrcr.20504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., M. Hughes, B. Henn, E. D. Gutmann, B. Livneh, J. Dozier, and P. Neiman, 2015: High-elevation precipitation patterns: Using snow measurements to assess daily gridded datasets across the Sierra Nevada, California. J. Hydrometeor., 16, 17731792, doi:10.1175/JHM-D-15-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mankin, J. S., D. Viviroli, D. Singh, A. Y. Hoekstra, and N. S. Diffenbaugh, 2015: The potential for snow to supply human water demand in the present and future. Environ. Res. Lett., 10, 114016, doi:10.1088/1748-9326/10/11/114016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Margulis, S. A., G. Cortés, M. Girotto, and M. Durand, 2016: A Landsat-era Sierra Nevada (USA) snow reanalysis (1985–2015). J. Hydrometeor., 17, 12031221, doi:10.1175/JHM-D-15-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, D., A. Winstral, M. Reba, J. Pomeroy, and M. Kumar, 2013: An evaluation of methods for determining during-storm precipitation phase and the rain/snow transition elevation at the surface in a mountain basin. Adv. Water Resour., 55, 98110, doi:10.1016/j.advwatres.2012.11.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maussion, F., D. Scherer, R. Finkelnburg, J. Richters, W. Yang, and T. Yao, 2011: WRF simulation of a precipitation event over the Tibetan Plateau, China—An assessment using remote sensing and ground observations. Hydrol. Earth Syst. Sci., 15, 17951817, doi:10.5194/hess-15-1795-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, J., R. Yang, H. Wei, M. Ek, G. Gayno, P. Xie, and K. Mitchell, 2012: The land surface analysis in the NCEP Climate Forecast System Reanalysis. J. Hydrometeor., 13, 16211630, doi:10.1175/JHM-D-11-090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meromy, L., N. P. Molotch, T. E. Link, S. R. Fassnacht, and R. Rice, 2013: Subgrid variability of snow water equivalent at operational snow stations in the western USA. Hydrol. Processes, 27, 23832400, doi:10.1002/hyp.9355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

  • Meybeck, M., P. Green, and C. Vörösmarty, 2001: A new typology for mountains and other relief classes. Mt. Res. Dev., 21, 3445, doi:10.1659/0276-4741(2001)021[0034:ANTFMA]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., P. W. Mote, and J. D. Lundquist, 2010: Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. J. Geophys. Res., 115, D14122, doi:10.1029/2009JD013493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molotch, N. P., and R. C. Bales, 2005: Scaling snow observations from the point to the grid element: Implications for observation network design. Water Resour. Res., 41, W11421, doi:10.1029/2005WR004229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mudryk, L. R., C. Derksen, P. J. Kushner, and R. Brown, 2015: Characterization of Northern Hemisphere snow water equivalent datasets, 1981–2010. J. Climate, 28, 80378051, doi:10.1175/JCLI-D-15-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Operational Hydrologic Remote Sensing Center, 2004: Snow Data Assimilation System (SNODAS) data products at NSIDC, version 1. National Snow and Ice Data Center, accessed 6 January 2017, doi:10.7265/N5TB14TC.

    • Crossref
    • Export Citation
  • Niu, G. Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, doi:10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolin, A. W., 2012: Perspectives on climate change, mountain hydrology, and water resources in the Oregon Cascades, USA. Mt. Res. Dev., 32, S35S46, doi:10.1659/MRD-JOURNAL-D-11-00038.S1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, M., and Coauthors, 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 2. Evaluation of model simulated snow water equivalent. J. Geophys. Res., 108, 8850, doi:10.1029/2003JD003994.

    • Search Google Scholar
    • Export Citation
  • Pavelsky, T. M., S. Kapnick, and A. Hall, 2011: Accumulation and melt dynamics of snowpack from a multiresolution regional climate model in the central Sierra Nevada, California. J. Geophys. Res., 116, D16115, doi:10.1029/2010JD015479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavelsky, T. M., S. Sobolowsk, S. B. Kapnick, and J. B. Barnes, 2012: Changes in orographic precipitation patterns caused by a shift from snow to rain. Geophys. Res. Lett., 39, L18706, doi:10.1029/2012GL052741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepin, N. C., and Coauthors, 2015: Elevation-dependent warming in mountain regions of the world. Nat. Climate Change, 5, 424430, doi:10.1038/nclimate2563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, doi:10.1175/2010JCLI3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., R. D. Koster, G. J. M. De Lannoy, B. A. Forman, Q. Liu, S. P. P. Mahanama, and A. Touré, 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338, doi:10.1175/JCLI-D-10-05033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renwick, J., 2014: MOUNTerrain: GEWEX mountainous terrain precipitation project. GEWEX News, Vol. 24, No. 4, International GEWEX Project Office, Silver Spring, MD, 5–6. [Available online at http://www.gewex.org/gewex-content/files_mf/1432213914Nov2014.pdf.]

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

  • Rutter, N., and Coauthors, 2009: Evaluation of forest snow processes models (SnowMIP2). J. Geophys. Res., 114, D06111, doi:10.1029/2008JD011063.

    • Search Google Scholar
    • Export Citation
  • Salzmann, N., and L. O. Mearns, 2012: Assessing the performance of multiple regional climate model simulations for seasonal mountain snow in the Upper Colorado River Basin. J. Hydrometeor., 13, 539556, doi:10.1175/2011JHM1371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, R., and Coauthors, 2006: GRACE observations of changes in continental water storage. Global Planet. Change, 50, 112126, doi:10.1016/j.gloplacha.2004.11.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shamir, E., and K. P. Georgakakos, 2006: Distributed snow accumulation and ablation modeling in the American River basin. Adv. Water Resour., 29, 558570, doi:10.1016/j.advwatres.2005.06.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Coauthors, 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 2. Evaluation of model simulated snow water equivalent. J. Geophys. Res., 108, 8849, doi:10.1029/2002JD003274.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Snauffer, A. M., W. W. Hsieh, and A. J. Cannon, 2016: Comparison of gridded snow water equivalent products with in situ measurements in British Columbia, Canada. J. Hydrol., 541, 714726, doi:10.1016/j.jhydrol.2016.07.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturm, M., J. Holmgren, and G. E. Liston, 1995: A seasonal snow cover classification system for local to global applications. J. Climate, 8, 12611283, doi:10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sultana, R., K.-L. Hsu, J. Li, and S. Sorooshian, 2014: Evaluating the Utah Energy Balance (UEB) snow model in the Noah land-surface model. Hydrol. Earth Syst. Sci., 18, 35533570, doi:10.5194/hess-18-3553-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Syed, T. H., J. S. Famiglietti, M. Rodell, J. Chen, and C. R. Wilson, 2008: Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour. Res., 44, W02433, doi:10.1029/2006WR005779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takala, M., K. Luojus, J. Pulliainen, C. Derksen, J. Lemmetyinen, J. P. Kärnä, J. Koskinen, and B. Bojkov, 2011: Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens. Environ., 115, 35173529, doi:10.1016/j.rse.2011.08.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tedesco, M., and P. S. Narvekar, 2010: Assessment of the NASA AMSR-E SWE product. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 3, 141159, doi:10.1109/JSTARS.2010.2040462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tedesco, M., R. Kelly, J. L. Foster, and A. T. C. Chang, 2004: AMSR-E/Aqua Daily L3 Global Snow Water Equivalent EASE-Grids, version 2. Subset used: 2002 to present (updated daily). NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 6 January 2017, doi:10.5067/AMSR-E/AE_DYSNO.002.

    • Crossref
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., 1991: CLASS—A Canadian Land Surface Scheme for GCMS. I. Soil model. Int. J. Climatol., 11, 111133, doi:10.1002/joc.3370110202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viviroli, D., H. H. Dürr, B. Messerli, M. Meybeck, and R. Weingartner, 2007: Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res., 43, W07447, doi:10.1029/2006WR005653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuyovich, C. M., C. V. Henri, and D. Fern, 2014: Comparison of passive microwave and modeled estimates of total watershed SWE in the continental United States. Water Resour. Res. Res., 50, 90889102, doi:10.1002/2013WR014734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D., and Coauthors, 2011: Simulating the Sierra Nevada snowpack: The impact of snow albedo and multi-layer snow physics. Climatic Change, 109, 95117, doi:10.1007/s10584-011-0312-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, H., Y. Xia, K. E. Mitchell, and M. B. Ek, 2013: Improvement of the Noah land surface model for warm season processes: Evaluation of water and energy flux simulation. Hydrol. Processes, 27, 297303, doi:10.1002/hyp.9214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, E. F., D. Lettenmaier, X. Liang, B. Nijssen, and S. W. Wetzel, 1997: Hydrological modeling of continental-scale basins. Annu. Rev. Earth Planet. Sci., 25, 279300, doi:10.1146/annurev.earth.25.1.279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wrzesien, M. L., T. M. Pavelsky, S. B. Kapnick, M. T. Durand, and T. H. Painter, 2015: Evaluation of snow cover fraction for regional climate simulations in the Sierra Nevada. Int. J. Climatol., 35, 24722484, doi:10.1002/joc.4136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012a: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012b: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res., 117, D03110, doi:10.1029/2011JD016051.

    • Search Google Scholar
    • Export Citation
  • Xu, L., and P. Dirmeyer, 2011: Snow–atmosphere coupling strength in a global atmospheric model. Geophys. Res. Lett., 38, L13401, doi:10.1029/2011GL048049.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 763 351 0
PDF Downloads 613 274 0

Comparison of Methods to Estimate Snow Water Equivalent at the Mountain Range Scale: A Case Study of the California Sierra Nevada

View More View Less
  • 1 School of Earth Sciences, and Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio
  • | 2 Department of Geological Sciences, University of North Carolina, Chapel Hill, North Carolina
  • | 3 School of Earth Sciences, and Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio
  • | 4 Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, California
Restricted access

Abstract

Despite the importance of snow in global water and energy budgets, estimates of global mountain snow water equivalent (SWE) are not well constrained. Two approaches for estimating total range-wide SWE over Sierra Nevada, California, are assessed: 1) global/hemispherical models and remote sensing and models available for continental United States (CONUS) plus southern Canada (CONUS+) available to the scientific community and 2) regional climate model simulations via the Weather Research and Forecasting (WRF) Model run at 3, 9, and 27 km. As no truth dataset provides total mountain range SWE, these two approaches are compared to a “reference” SWE consisting of three published, independent datasets that utilize/validate against in situ SWE measurements. Model outputs are compared with the reference datasets for three water years: 2005 (high snow accumulation), 2009 (average), and 2014 (low). There is a distinctive difference between the reference/WRF datasets and the global/CONUS+ daily estimates of SWE, with the former suggesting up to an order of magnitude more snow. Results are qualitatively similar for peak SWE and 1 April SWE for all three years. Analysis of SWE time series indicates that lower SWE for global and CONUS+ datasets is likely due to precipitation, rain/snow partitioning, and ablation parameterization differences. It is found that WRF produces reasonable (within 50%) estimates of total mountain range SWE in the Sierra Nevada, while the global and CONUS+ datasets underestimate SWE.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: M. L. Wrzesien, wrzesien.1@osu.edu

Abstract

Despite the importance of snow in global water and energy budgets, estimates of global mountain snow water equivalent (SWE) are not well constrained. Two approaches for estimating total range-wide SWE over Sierra Nevada, California, are assessed: 1) global/hemispherical models and remote sensing and models available for continental United States (CONUS) plus southern Canada (CONUS+) available to the scientific community and 2) regional climate model simulations via the Weather Research and Forecasting (WRF) Model run at 3, 9, and 27 km. As no truth dataset provides total mountain range SWE, these two approaches are compared to a “reference” SWE consisting of three published, independent datasets that utilize/validate against in situ SWE measurements. Model outputs are compared with the reference datasets for three water years: 2005 (high snow accumulation), 2009 (average), and 2014 (low). There is a distinctive difference between the reference/WRF datasets and the global/CONUS+ daily estimates of SWE, with the former suggesting up to an order of magnitude more snow. Results are qualitatively similar for peak SWE and 1 April SWE for all three years. Analysis of SWE time series indicates that lower SWE for global and CONUS+ datasets is likely due to precipitation, rain/snow partitioning, and ablation parameterization differences. It is found that WRF produces reasonable (within 50%) estimates of total mountain range SWE in the Sierra Nevada, while the global and CONUS+ datasets underestimate SWE.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: M. L. Wrzesien, wrzesien.1@osu.edu
Save