Diagnosing an Artificial Trend in NLDAS-2 Afternoon Precipitation

Craig R. Ferguson Atmospheric Sciences Research Center, and Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Craig R. Ferguson in
Current site
Google Scholar
PubMed
Close
and
David M. Mocko Hydrological Sciences Laboratory, NASA GSFC, Greenbelt, Maryland, and Science Applications International Corporation, McLean, Virginia

Search for other papers by David M. Mocko in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

While investigating linkages between afternoon peak rainfall amount and land–atmosphere coupling strength, a statistically significant trend in phase 2 of the North American Land Data Assimilation System (NLDAS-2) warm season (April–September) afternoon (1700–2259 UTC) precipitation was noted for a large fraction of the conterminous United States, namely, two-thirds of the area east of the Mississippi River, during the period from 1979 to 2015. To verify and better characterize this trend, a thorough statistical analysis is undertaken. The analysis focuses on three aspects of precipitation: amount, frequency, and intensity at 6-hourly time scale and for each calendar month separately. At the NLDAS-2 native resolution of 0.125° × 0.125°, Kendall’s tau and Sen’s slope estimators are used to detect and estimate trends and the Pettitt test is used to detect breakpoints. Parallel analyses are conducted on both NARR and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), subdaily precipitation estimates. Widespread breakpoints of field significance at the α = 0.05 level are detected in the NLDAS-2 frequency and intensity series for all months and 6-h periods that are absent from the analogous NARR and MERRA-2 datasets. These breakpoints are shown to correspond with a July 1996 NLDAS-2 transition away from hourly 2° × 2.5° NOAA/CPC precipitation estimates to hourly 4-km stage II Doppler radar precipitation estimates in the temporal disaggregation of CPC daily gauge analyses. While NLDAS-2 may provide the most realistic diurnal precipitation cycle overall, users should be aware of this discontinuity and its direct effect on long-term trends in subdaily precipitation and indirect effects on trends in modeled soil moisture, surface temperature, surface energy and water fluxes, snow cover, snow water equivalent, and runoff/streamflow.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0251.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Craig R. Ferguson, crferguson@albany.edu

Abstract

While investigating linkages between afternoon peak rainfall amount and land–atmosphere coupling strength, a statistically significant trend in phase 2 of the North American Land Data Assimilation System (NLDAS-2) warm season (April–September) afternoon (1700–2259 UTC) precipitation was noted for a large fraction of the conterminous United States, namely, two-thirds of the area east of the Mississippi River, during the period from 1979 to 2015. To verify and better characterize this trend, a thorough statistical analysis is undertaken. The analysis focuses on three aspects of precipitation: amount, frequency, and intensity at 6-hourly time scale and for each calendar month separately. At the NLDAS-2 native resolution of 0.125° × 0.125°, Kendall’s tau and Sen’s slope estimators are used to detect and estimate trends and the Pettitt test is used to detect breakpoints. Parallel analyses are conducted on both NARR and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), subdaily precipitation estimates. Widespread breakpoints of field significance at the α = 0.05 level are detected in the NLDAS-2 frequency and intensity series for all months and 6-h periods that are absent from the analogous NARR and MERRA-2 datasets. These breakpoints are shown to correspond with a July 1996 NLDAS-2 transition away from hourly 2° × 2.5° NOAA/CPC precipitation estimates to hourly 4-km stage II Doppler radar precipitation estimates in the temporal disaggregation of CPC daily gauge analyses. While NLDAS-2 may provide the most realistic diurnal precipitation cycle overall, users should be aware of this discontinuity and its direct effect on long-term trends in subdaily precipitation and indirect effects on trends in modeled soil moisture, surface temperature, surface energy and water fluxes, snow cover, snow water equivalent, and runoff/streamflow.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0251.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Craig R. Ferguson, crferguson@albany.edu

Supplementary Materials

    • Supplemental Materials (DOCX 13.58 MB)
Save
  • Andreadis, K. M., E. A. Clark, A. W. Wood, A. F. Hamlet, and D. P. Lettenmaier, 2005: Twentieth-century drought in the conterminous United States. J. Hydrometeor., 6, 9851001, doi:10.1175/JHM450.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bai, J., and P. Perron, 2003: Computation and analysis of multiple structural change models. J. Appl. Econ., 18, 122, doi:10.1002/jae.659.

  • Bárdossy, A., and H. J. Caspary, 1990: Detection of climate change in Europe by analyzing European atmospheric circulation patterns from 1881 to 1989. Theor. Appl. Climatol., 42, 155167, doi:10.1007/BF00866871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beaulieu, C., J. Chen, and J. L. Sarmiento, 2012: Change-point analysis as a tool to detect abrupt climate variations. Philos. Trans. Roy. Soc. London, 370A, 12281249, doi:10.1098/rsta.2011.0383.

    • Search Google Scholar
    • Export Citation
  • Benjamini, Y., and Y. Hochberg, 1995: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc., 57B, 289300.

    • Search Google Scholar
    • Export Citation
  • Blenkinsop, S., E. Lewis, S. C. Chan, and H. J. Fowler, 2017: Quality-control of an hourly rainfall dataset and climatology of extremes for the UK. Int. J. Climatol., 37, 722740, doi:10.1002/joc.4735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Busuioc, A., and H. von Storch, 1996: Changes in the winter precipitation in Romania and its relation to the large-scale circulation. Tellus, 48A, 538552, doi:10.1034/j.1600-0870.1996.t01-3-00004.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W. J., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, doi:10.1038/nclimate2100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 2000: El Niño 1997–1998: The Climate Event of the Century. Oxford University Press, 232 pp.

    • Crossref
    • Export Citation
  • Charba, J. P., A. W. Harrell III, and A. C. Lackner III, 1992: A monthly precipitation amount climatology derived from published atlas maps: Development of a digital database. TDL Office Note 92-7, NOAA/NWS, 20 pp. [Available online at http://www.nws.noaa.gov/mdl/pubs/Documents/OfficeNotes/OfficeNote1992-07.pdf.]

  • Chen, M. Y., W. Shi, P. P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, doi:10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and P. D. Sardeshmukh, 2010: Removing ENSO-related variations from the climate record. J. Climate, 23, 19571978, doi:10.1175/2009JCLI2735.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

  • Cosgrove, B. A., and Coauthors, 2003: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108, 8842, doi:10.1029/2002JD003118.

    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, doi:10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, A. G., 1977: SNOTEL: Monitoring climatic factors to predict water supplies. J. Soil Water Conserv., 32, 294295.

  • Dai, A., 1999: Recent changes in the diurnal cycle of precipitation over the United States. Geophys. Res. Lett., 26, 341344, doi:10.1029/1998GL900318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104, 63776402, doi:10.1029/98JD02720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2012: Simulating the diurnal cycle of rainfall in global climate models: Resolution versus parameterization. Climate Dyn., 39, 399418, doi:10.1007/s00382-011-1127-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erlingis, J. M., and A. P. Barros, 2014: A study of the role of daytime land–atmosphere interactions on nocturnal convective activity in the Southern Great Plains during CLASIC. J. Hydrometeor., 15, 19321953, doi:10.1175/JHM-D-14-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., H. M. Van den Dool, D. Lohmann, and K. Mitchell, 2006: 1948–98 U.S. hydrological reanalysis by the Noah land data assimilation system. J. Climate, 19, 12141237, doi:10.1175/JCLI3681.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., and G. Villarini, 2012: Detecting inhomogeneities in the Twentieth Century Reanalysis over the central United States. J. Geophys. Res., 117, D05123, doi:10.1029/2011JD016988.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., and G. Villarini, 2014: An evaluation of the statistical homogeneity of the Twentieth Century Reanalysis. Climate Dyn., 42, 28412866, doi:10.1007/s00382-013-1996-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., J. Sheffield, E. F. Wood, and H. L. Gao, 2010: Quantifying uncertainty in a remote sensing–based estimate of evapotranspiration over continental USA. Int. J. Remote Sens., 31, 38213865, doi:10.1080/01431161.2010.483490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, doi:10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570583, doi:10.1175/1525-7541(2003)004<0570:ACOSML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glahn, H. R., T. L. Chambers, W. S. Richardson, and H. P. Perrotti, 1985: Objective map analysis for the local AFOS MOS Program. NOAA Tech. Memo. NWS TDL 75, 34 pp. [Available online at http://www.nws.noaa.gov/mdl/pubs/Documents/TechMemo/TechMemo75.pdf.]

  • GMAO, 2015: MERRA-2 tavg1_2d_flx_Nx: 2d,1-hourly,time-averaged,single-level,assimilation,surface flux diagnostics V5.12.4. Goddard Earth Sciences Data and Information Services Center, accessed 29 July 2016, doi:10.5067/7MCPBJ41Y0K6.

    • Crossref
    • Export Citation
  • Gochis, D. J., and Coauthors, 2016: Operational Hydrometeorological Predictions in Mountain Watersheds using the New National Water Model Implementation of the WRF-Hydro Modeling System. 17th Conf. on Mountain Meteorology, Burlington, VA, Amer. Meteor. Soc., 15.6. [Available online at https://ams.confex.com/ams/17Mountain/webprogram/Paper296619.html.]

  • Guo, Z. C., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625, doi:10.1175/JHM511.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., A. J. Pitman, P. K. Love, P. Irannejad, and T. H. Chen, 1995: The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3. Bull. Amer. Meteor. Soc., 76, 489503, doi:10.1175/1520-0477(1995)076<0489:TPFIOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., J. Janowiak, and J. P. Yao, 1996: A gridded hourly precipitation data base for the United States (1963–1993). NCEP/Climate Prediction Center Atlas 1, NOAA, 47 pp. [Available online at http://www.cpc.ncep.noaa.gov/research_papers/ncep_cpc_atlas/1/cover.html.]

  • Higgins, R. W., W. Shi, E. S. Yarosh, and R. Joyce, 2000: Improved United States precipitation quality control system and analysis. NCEP/Climate Prediction Center Atlas 7, NOAA, 40 pp. [Available online at http://www.cpc.ncep.noaa.gov/research_papers/ncep_cpc_atlas/7/toc.html.]

  • Hirsch, R. M., J. R. Slack, and R. A. Smith, 1982: Techniques of trend analysis for monthly water quality data. Water Resour. Res., 18, 107121, doi:10.1029/WR018i001p00107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2003: A nonhydrostatic model based on a new approach. Meteor. Atmos. Phys., 82, 271285, doi:10.1007/s00703-001-0587-6.

  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. 4th ed. Griffin, 202 pp.

  • Khaliq, M. N., T. B. M. J. Ouarda, P. Gachon, L. Sushama, and A. St-Hilaire, 2009: Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers. J. Hydrol., 368, 117130, doi:10.1016/j.jhydrol.2009.01.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., X. N. Jiang, J. Boyle, S. Malyshev, and S. C. Xie, 2006: Diagnosis of the summertime warm and dry bias over the U.S. Southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys. Res. Lett., 33, L18805, doi:10.1029/2006GL027567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, doi:10.1175/JHM510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M. I., and Coauthors, 2007: An analysis of the warm-season diurnal cycle over the continental United States and northern Mexico in general circulation models. J. Hydrometeor., 8, 344366, doi:10.1175/JHM581.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lettenmaier, D. P., E. F. Wood, and J. R. Wallis, 1994: Hydro-climatological trends in the continental United States, 1948–88. J. Climate, 7, 586607, doi:10.1175/1520-0442(1994)007<0586:HCTITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X. Z., L. Li, A. Dai, and K. E. Kunkel, 2004: Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys. Res. Lett., 31, L24208, doi:10.1029/2004GL021054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.]

  • Lin, Y., M. E. Baldwin, K. E. Mitchell, E. Rogers, and G. DiMego, 2001: Spring 2001 changes to the NCEP Eta Analysis and Forecast System: Assimilation of observed precipitation. 18th Conf. Weather Analysis Forecasting/14th Conf.on Numerical Weather Prediction, Fort Lauderdale, FL, Amer. Meteor. Soc., J2.7. [Available online at https://ams.confex.com/ams/WAF-NWP-MESO/techprogram/paper_23306.htm.]

  • Liu, L., Z. X. Xu, and J. X. Huang, 2012: Spatio-temporal variation and abrupt changes for major climate variables in the Taihu basin, China. Stochastic Environ. Res. Risk Assess., 26, 777791, doi:10.1007/s00477-011-0547-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111, 4659, doi:10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., E. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K. Andreadis, E. Maurer, and D. Lettenmaier, 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, doi:10.1175/JCLI-D-12-00508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., T. J. Bohn, D. W. Pierce, F. Munoz-Arriola, B. Nijssen, R. Vose, D. R. Cayan, and L. Brekke, 2015: A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and southern Canada 1950–2013. Sci. Data, 2, 150042, doi:10.1038/sdata.2015.42.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., E. H. Berbery, and K. E. Mitchell, 2005: The operational Eta model precipitation and surface hydrologic cycle of the Columbia and Colorado basins. J. Hydrometeor., 6, 341370, doi:10.1175/JHM435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallakpour, I., and G. Villarini, 2016: A simulation study to examine the sensitivity of the Pettitt test to detect abrupt changes in mean. Hydrol. Sci. J., 61, 245254, doi:10.1080/02626667.2015.1008482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, doi:10.2307/1907187.

  • Matsui, T., D. Mocko, M. I. Lee, W. K. Tao, M. J. Suarez, and R. A. Pielke, 2010: Ten-year climatology of summertime diurnal rainfall rate over the conterminous U.S. Geophys. Res. Lett., 37, L13807, doi:10.1029/2010GL044139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., A. W. Wood, J. C. Adam, D. P. Lettenmaier, and B. Nijssen, 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, doi:10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: El Niño: The child prodigy of 1997–98. Nature, 398, 559562, doi:10.1038/19193.

  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

  • Miller, C. J., and Coauthors, 2001: Controlling the false-discovery rate in astrophysical data analysis. Astron. J., 122, 34923505, doi:10.1086/324109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., L. C. Chen, S. Shukla, T. J. Bohn, and D. P. Lettenmaier, 2012: Uncertainties in North American Land Data Assimilation Systems over the contiguous United States. J. Hydrometeor., 13, 9961009, doi:10.1175/JHM-D-11-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, doi:10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA, 2016: Land Data Toolkit: LDT 7.1 users’ guide. NASA GSFC Doc., 129 pp. [Available online at https://modelingguru.nasa.gov/servlet/JiveServlet/previewBody/2555-102-3-6450/LDT_usersguide.pdf.]

  • Nearing, G. S., D. M. Mocko, C. D. Peters-Lidard, S. V. Kumar, and Y. L. Xia, 2016: Benchmarking NLDAS-2 soil moisture and evapotranspiration to separate uncertainty contributions. J. Hydrometeor., 17, 745759, doi:10.1175/JHM-D-15-0063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, M., H. B. Li, and E. Wood, 2010: Assessing the skill of satellite-based precipitation estimates in hydrologic applications. Water Resour. Res., 46, W09535, doi:10.1029/2009WR008290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pettitt, A. N., 1979: A non-parametric approach to the change-point problem. Appl. Stat., 28, 126135, doi:10.2307/2346729.

  • Pitman, A. J., and A. Henderson-Sellers, 1998: Recent progress and results from the Project for the Intercomparison of Landsurface Parameterization Schemes. J. Hydrol., 212–213, 128135, doi:10.1016/S0022-1694(98)00206-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and Coauthors, 1999: Key results and implications from phase 1(c) of the Project for Intercomparison of Land-Surface Parametrization Schemes. Climate Dyn., 15, 673684, doi:10.1007/s003820050309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pohlert, T., 2015: Trend: Non-parametric trend tests and change-point detection, version 0.0.1. R package. [Available online at https://www.rdocumentation.org/packages/trend/versions/0.0.1.]

  • Poli, P., and Coauthors, 2013: The data assimilation system and initial performance evaluation of the ECMWF pilot re-analysis of the 20th-century assimilating surface observations only (ERA-20c). ERA Rep. Series 14, ECMWF, 62 pp. [Available online at http://www.ecmwf.int/en/elibrary/11699-data-assimilation-system-and-initial-performance-evaluation-ecmwf-pilot-reanalysis.]

  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, doi:10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Core Development Team, 2011: R: A language and environment for statistical computing. R Foundation for Statistical Computing. [Available online at http://www.R-project.org/.]

  • Reichle, R. H., R. D. Koster, G. J. M. de Lannoy, B. A. Forman, Q. Liu, S. P. P. Mahanama, and A. Touré, 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338, doi:10.1175/JCLI-D-10-05033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renard, B., and Coauthors, 2008: Regional methods for trend detection: Assessing field significance and regional consistency. Water Resour. Res., 44, W08419, doi:10.1029/2007WR006268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renka, R. J., 1988: Multivariate interpolation of large sets of scattered data. ACM Trans. Math. Software, 14, 139148, doi:10.1145/45054.45055.

  • Rogers, E., T. Black, D. Deaven, G. DiMego, Q. Zhao, M. Baldwin, N. Junker, and Y. Lin, 1996: Changes to the operational “early” Eta analysis/forecast system at the National Centers for Environmental Prediction. Wea. Forecasting, 11, 391413, doi:10.1175/1520-0434(1996)011<0391:CTTOEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruane, A. C., 2010: NARR’s atmospheric water cycle components. Part II: Summertime mean and diurnal interactions. J. Hydrometeor., 11, 12201233, doi:10.1175/2010JHM1279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, T., H. Miura, M. Satoh, Y. N. Takayabu, and Y. Q. Wang, 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Climate, 22, 48094826, doi:10.1175/2009JCLI2890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, doi:10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. P. Clark, R. L. Armstrong, D. A. McGinnis, and R. S. Pulwarty, 1999: Characteristics of the western United States snowpack from Snowpack Telemetry (SNOTEL) data. Water Resour. Res., 35, 21452160, doi:10.1029/1999WR900090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shafran, P. C., J. Woolen, W. Ebisuzaki, W. Shi, Y. Fan, R. Grumbine, and M. Fennessy, 2004: Observational data used for assimilation in the NCEP North American Regional Reanalysis. 14th Conf. on Applied Climatology, San Diego, CA, Amer. Meteor. Soc., 1.4. [Available online at http://ams.confex.com/ams/pdfpapers/71689.pdf.]

  • Shepard, D. S., 1984: Computer mapping: The SYMAP interpolation algorithm. Spatial Statistics and Models, G. L. Gaile and C. J. Willmott, Eds., D. Reidel, 133–145.

    • Crossref
    • Export Citation
  • Song, H.-J., C. R. Ferguson, and J. K. Roundy, 2016: Land–atmosphere coupling at the Southern Great Plains Atmospheric Radiation Measurement (ARM) field site and its role in anomalous afternoon peak precipitation. J. Hydrometeor., 17, 541556, doi:10.1175/JHM-D-15-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W. K., and Coauthors, 2013: Precipitation intensity and variation during MC3E: A numerical modeling study. J. Geophys. Res. Atmos., 118, 71997218, doi:10.1002/jgrd.50410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theil, H., 1950: A rank-invariant method of linear and polynomial regression analysis. Proc. K. Ned. Akad. Wet., 53, 386392, 512–525, 1397–1412.

    • Search Google Scholar
    • Export Citation
  • Tramblay, Y., S. El Adlouni, and E. Servat, 2013: Trends and variability in extreme precipitation indices over Maghreb countries. Nat Hazard Earth Sys, 13, 32353248, doi:10.5194/nhess-13-3235-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venables, W. N., and B. D. Ripley, 2002: Modern Applied Statistics with S. 4th ed. Springer, 498 pp.

    • Crossref
    • Export Citation
  • Ventura, V., C. J. Paciorek, and J. S. Risbey, 2004: Controlling the proportion of falsely rejected hypotheses when conducting multiple tests with climatological data. J. Climate, 17, 43434356, doi:10.1175/3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., F. Serinaldi, J. A. Smith, and W. F. Krajewski, 2009: On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour. Res., 45, W08417, doi:10.1029/2008WR007645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406419, doi:10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijngaard, J. B., A. M. G. K. Tank, and G. P. Konnen, 2003: Homogeneity of 20th century European daily temperature and precipitation series. Int. J. Climatol., 23, 679692, doi:10.1002/joc.906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: On “field significance” and the false discovery rate. J. Appl. Meteor. Climatol., 45, 11811189, doi:10.1175/JAM2404.1.

  • Wood, A. W., and D. P. Lettenmaier, 2006: A test bed for new seasonal hydrologic forecasting approaches in the western United States. Bull. Amer. Meteor. Soc., 87, 16991712, doi:10.1175/BAMS-87-12-1699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, E. F., and Coauthors, 1998: The Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS) phase 2(c) Red–Arkansas River basin experiment: 1. Experiment description and summary intercomparisons. Global Planet. Change, 19, 115135, doi:10.1016/S0921-8181(98)00044-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y. L., and Coauthors, 2009: NLDAS primary forcing data L4 hourly 0.125 × 0.125 degree V002. Goddard Earth Sciences Data and Information Services Center, accessed 3 August 2016, doi:10.5067/6J5LHHOHZHN4.

    • Crossref
    • Export Citation
  • Xia, Y. L., and Coauthors, 2012a: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xia, Y. L., and Coauthors, 2012b: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res., 117, D03110, doi:10.1029/2011JD016051.

    • Search Google Scholar
    • Export Citation
  • Xia, Y. L., J. Sheffield, M. B. Ek, J. Dong, N. Chaney, H. Wei, J. Meng, and E. F. Wood, 2014: Evaluation of multi-model simulated soil moisture in NLDAS-2. J. Hydrol., 512, 107125, doi:10.1016/j.jhydrol.2014.02.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamada, T. J., M. I. Lee, M. Kanamitsu, and H. Kanamaru, 2012: Diurnal characteristics of rainfall over the contiguous United States and northern Mexico in the dynamically downscaled reanalysis dataset (US10). J. Hydrometeor., 13, 11421148, doi:10.1175/JHM-D-11-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, S., P. Pilon, B. Phinney, and G. Cavadias, 2002: The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Processes, 16, 18071829, doi:10.1002/hyp.1095.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 494 211 12
PDF Downloads 291 73 1