• Anderson, J., F. Chung, M. Anderson, L. Brekke, D. Easton, M. Ejeta, R. Peterson, and R. Snyder, 2008: Progress on incorporating climate change into management of California’s water resources. Climatic Change, 87, 91108, doi:10.1007/s10584-007-9353-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, V. T., 1964: Handbook of Applied Hydrology. McGraw-Hill, 1468 pp.

  • Corrigan, P., D. D. Fenn, D. R. Kluck, and J. L. Vogel, 1999: Probable maximum precipitation for California. NOAA Hydrometeorological Rep. 59, 419 pp. [Available online at http://www.nws.noaa.gov/oh/hdsc/PMP_documents/HMR59.pdf.]

  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2004: Fifty-two years of “Pineapple-Express” storms across the west coast of North America. PIER Project Rep. CEC-500-2005-004, California Energy Commission, 20 pp. [Available online at http://www.energy.ca.gov/2005publications/CEC-500-2005-004/CEC-500-2005-004.PDF.]

  • Dettinger, M. D., 2011: Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes. J. Amer. Water Resour. Assoc., 47, 514523, doi:10.1111/j.1752-1688.2011.00546.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, D. R. Cayan, 2011: Atmospheric rivers, floods, and the water resources of California. Water, 3, 455478, doi:10.3390/w3020445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DWR, 2006: Progress on incorporating climate change into management of California’s water resources. Tech. Memo. Rep., California Department of Water Resources, 339 pp. [Available online at http://baydeltaoffice.water.ca.gov/climatechange.cfm.]

  • Garvert, M. F., B. A. Colle, and C. F. Mass, 2005: The 13–14 December 2001 IMPROVE-2 event. Part I: Synoptic and mesoscale evolution and comparison with a mesoscale model simulation. J. Atmos. Sci., 62, 34743492, doi:10.1175/JAS3549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the Fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 121 pp., doi:10.5065/D60Z716B.

    • Crossref
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, M., P. J. Neiman, E. Sukovich, and M. Ralph, 2012: Representation of the Sierra barrier jet in 11 years of a high-resolution dynamical reanalysis downscaling compared with long-term wind profiler observations. J. Geophys. Res., 117, D18116, doi:10.1029/2012JD017869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Ishida, K., M. L. Kavvas, S. Jang, Z. Q. Chen, N. Ohara, and M. L. Anderson, 2015a: Physically based estimation of maximum precipitation over three watersheds in Northern California: Relative humidity maximization method. J. Hydrol. Eng., 20, 04015014, doi:10.1061/(ASCE)HE.1943-5584.0001175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishida, K., M. L. Kavvas, S. Jang, Z. Q. Chen, N. Ohara, and M. L. Anderson, 2015b: Physically based estimation of maximum precipitation over three watersheds in Northern California: Atmospheric boundary condition shifting. J. Hydrol. Eng., 20, 04014052, doi:10.1061/(ASCE)HE.1943-5584.0001026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jang, S., and Kavvas, M., 2015: Downscaling global climate simulations to regional scales: Statistical downscaling versus dynamical downscaling. J. Hydrol. Eng., 20, doi:10.1061/(ASCE)HE.1943-5584.0000939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jang, S., S. Kure, N. Ohara, M. L. Kavvas, G. Matanga, and K. Nelson, 2012: Regional climate change of atmospheric components in Northern California by dynamic downscaling. World Environmental and Water Resources Congress 2012, Albuquerque, NM, American Society of Civil Engineers, doi:10.1061/9780784412312.195.

    • Crossref
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170, doi:10.1007/978-1-935704-13-3_16.

    • Crossref
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., T. R. Karl, D. R. Easterling, K. Redmond, J. Young, X. Yin, and P. Hennon, 2013: Probable maximum precipitation and climate change. Geophys. Res. Lett., 40, 14021408, doi:10.1002/grl.50334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kure, S., S. Jang, N. Ohara, M. L. Kavvas, and Z. Q. Chen, 2013: WEHY-HCM for modeling interactive atmospheric-hydrologic processes at watershed scale. II: Model application to ungauged and sparsely gauged watersheds. J. Hydrol. Eng., 18, 12721281, doi:10.1061/(ASCE)HE.1943-5584.0000701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2015: The contribution of atmospheric rivers to precipitation in Europe and the United States. J. Hydrol., 522, 382390, doi:10.1016/j.jhydrol.2014.12.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., R. P. Allan, G. Villarini, B. Lloyd-Hughes, D. J. Brayshaw, and A. J. Wade, 2013: Future changes in atmospheric rivers and their implications for winter flooding in Britain. Environ. Res. Lett., 8, 034010, doi:10.1088/1748-9326/8/3/034010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, V. A., 1967: Estimation of extreme precipitation for spillway design floods. Tech. Memo. WBTM HYDRO-5, U.S. Weather Bureau, 29 pp. [Available online at http://www.nws.noaa.gov/oh/hdsc/Technical_memoranda/TM5.pdf.]

  • Myers, V. A., and R. M. Zehr, 1980: A methodology for point-to-area rainfall frequency ratios. NOAA Tech. Rep. NWS 24, 176 pp. [Available online at http://www.nws.noaa.gov/oh/hdsc/Technical_reports/TR24.pdf.]

  • NCAR, 2005: PSU/NCAR Mesoscale Modeling System tutorial class notes and user’s guide: MM5 Modeling System version 3. Accessed 21 March 2017. [Available online at http://www2.mmm.ucar.edu/mm5/documents/tutorial-v3-notes.html.]

  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, doi:10.1175/2011JHM1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., M. Hughes, B. J. Moore, F. M. Ralph, and E. M. Sukovich, 2013: Sierra barrier jets, atmospheric rivers, and precipitation characteristics in Northern California: A composite perspective based on a network of wind profilers. Mon. Wea. Rev., 141, 42114233, doi:10.1175/MWR-D-13-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohara, N., M. L. Kavvas, S. Kure, Z. Q. Chen, S. Jang, and E. Tan, 2011: Physically based estimation of maximum precipitation over American River watershed, California. J. Hydrol. Eng., 16, 351361, doi:10.1061/(ASCE)HE.1943-5584.0000324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and M. D. Dettinger, 2012: Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783790, doi:10.1175/BAMS-D-11-00188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. J. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107, doi:10.1002/qj.49712454804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roos, M., 2003: Extreme precipitation in the American River basin. California Extreme Precipitation Symposium, Davis, CA, American River Watershed Institute, 7 pp. [Available online at http://cepsym.org/Sympro2003/Roos.pdf.]

  • Schreiner, L. C., and J. T. Riedel, 1978: Probable maximum precipitation estimates, United States east of the 105th meridian. NOAA Hydrometeorological Rep. 51, 100 pp. [Available online at http://www.nws.noaa.gov/oh/hdsc/PMP_documents/HMR51.pdf.]

  • Swain, D. L., B. Lebassi-Habtezion, and N. S. Diffenbaugh, 2015: Evaluation of nonhydrostatic simulations of northeast Pacific atmospheric rivers and comparison to in situ observations. Mon. Wea. Rev., 143, 35563569, doi:10.1175/MWR-D-15-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • USACE, 2001: American River basin, California, Folsom Dam and Lake, revised PMF study. U.S. Army Corps of Engineers, 100 pp.

  • USACE, 2005: Stochastic modeling of extreme floods on the American River at Folsom Dam: Flood-frequency curve extension. Research Doc. 48, U.S. Army Corps of Engineers, 46 pp. [Available online at http://www.hec.usace.army.mil/publications/ResearchDocuments/RD-48.pdf.]

  • USWB, 1961: Interim report: Probable maximum precipitation in California. U.S. Weather Bureau Hydrometeorological Rep. 36, 226 pp. [Available online at http://www.nws.noaa.gov/oh/hdsc/PMP_documents/HMR36.pdf.]

  • Weaver, R. L., 1962: Meteorology of hydrologically critical storms in California. U.S. Weather Bureau Hydrometeorological Report 37, 227 pp. [Available online at http://www.nws.noaa.gov/oh/hdsc/PMP_documents/HMR37.pdf.]

  • World Meteorological Organization (WMO), 1973: Manual for estimation of probable maximum precipitation. Operation Hydrology Rep. 1, WMO-332, 190 pp.

  • World Meteorological Organization (WMO), 1986: Manual for estimation of probable maximum precipitation. 2nd ed. Operation Hydrology Rep. 1, WMO-332, 269 pp.

  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 206 125 3
PDF Downloads 200 140 2

Characterization of Extreme Storm Events Using a Numerical Model–Based Precipitation Maximization Procedure in the Feather, Yuba, and American River Watersheds in California

View More View Less
  • 1 Department of Civil and Architectural Engineering, University of Wyoming, Laramie, Wyoming
  • | 2 University of California, Davis, Davis, California
  • | 3 California Department of Water Resources, Sacramento, California
  • | 4 University of California, Davis, Davis, California
Restricted access

Abstract

Improvements on nonhydrostatic atmospheric models such as MM5 in the last few decades have enhanced our understanding of the precipitation mechanism affected by topography and nonlinear dynamics of the atmosphere. This study addresses the use of such a regional atmospheric model to estimate physical maximum precipitation rates for the next generation of flood management strategies under evolving climate conditions. First, 48 significant historical storm events were selected based on the continuous reconstructed precipitation conditions on the Feather, Yuba, and American River watersheds in California. Then, the boundary conditions of the numerical atmospheric model were modified with the fully saturated atmospheric layers (100% relative humidity) to generate the atmospheric conditions that maximize the precipitation over the three watersheds. Surprisingly, maximizing the atmospheric moisture supply at the model boundary does not always increase the precipitation in the watersheds of interest. A rain-shadow effect of the topography seemed to be intensified by the abundance of the atmospheric moisture in some cases. Consequently, although the linkage between the precipitable water in the atmosphere and the ground precipitation is generally proportional, the alignment of the topography and the wind field can modulate their relationship. Finally, a methodology to maximize the steady-state precipitation rate was discussed to characterize the conceptual continuous heavy storm event in the Feather, Yuba, and American River basins.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-15-0232.s1.

Corresponding author e-mail: Noriaki Ohara, nohara1@uwyo.edu

Abstract

Improvements on nonhydrostatic atmospheric models such as MM5 in the last few decades have enhanced our understanding of the precipitation mechanism affected by topography and nonlinear dynamics of the atmosphere. This study addresses the use of such a regional atmospheric model to estimate physical maximum precipitation rates for the next generation of flood management strategies under evolving climate conditions. First, 48 significant historical storm events were selected based on the continuous reconstructed precipitation conditions on the Feather, Yuba, and American River watersheds in California. Then, the boundary conditions of the numerical atmospheric model were modified with the fully saturated atmospheric layers (100% relative humidity) to generate the atmospheric conditions that maximize the precipitation over the three watersheds. Surprisingly, maximizing the atmospheric moisture supply at the model boundary does not always increase the precipitation in the watersheds of interest. A rain-shadow effect of the topography seemed to be intensified by the abundance of the atmospheric moisture in some cases. Consequently, although the linkage between the precipitable water in the atmosphere and the ground precipitation is generally proportional, the alignment of the topography and the wind field can modulate their relationship. Finally, a methodology to maximize the steady-state precipitation rate was discussed to characterize the conceptual continuous heavy storm event in the Feather, Yuba, and American River basins.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-15-0232.s1.

Corresponding author e-mail: Noriaki Ohara, nohara1@uwyo.edu

Supplementary Materials

    • Supplemental Materials (PPTX 41.34 MB)
Save