• Adler, B., N. Kalthoff, and L. Gantner, 2011: The impact of soil moisture inhomogeneities on the modification of a mesoscale convective system: An idealised model study. Atmos. Res., 101, 354372, doi:10.1016/j.atmosres.2011.03.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ajami, H., J. P. Evans, M. F. McCabe, and S. Stisen, 2014a: Technical note: Reducing the spin-up time of integrated surface water–groundwater models. Hydrol. Earth Syst. Sci., 18, 51695179, doi:10.5194/hess-18-5169-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ajami, H., M. F. McCabe, J. P. Evans, and S. Stisen, 2014b: Assessing the impact of model spin-up on surface water–groundwater interactions using an integrated hydrologic model. Water Resour. Res., 50, 26362656, doi:10.1002/2013WR014258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashby, S. F., and R. D. Falgout, 1996: A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations. Nucl. Sci. Eng., 124, 145159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, M. L., C. Welty, and A. J. Miller, 2016: Global topographic slope enforcement to ensure connectivity and drainage in an urban terrain. J. Hydrol. Eng., 21, 6015017, doi:10.1061/(ASCE)HE.1943-5584.0001306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonetti, S., G. Manoli, J.-C. Domec, M. Putti, M. Marani, and G. G. Katul, 2015: The influence of water table depth and the free atmospheric state on convective rainfall predisposition. Water Resour. Res., 51, 22832297, doi:10.1002/2014WR016431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and Q. Hu, 2004: Groundwater influences on soil moisture and surface evaporation. J. Hydrol., 297, 285300, doi:10.1016/j.jhydrol.2004.04.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, V. T., 2009: Open-Channel Hydraulics. Blackburn Press, 700 pp.

  • Cohen, A. E., S. M. Cavallo, M. C. Coniglio, and H. E. Brooks, 2015: A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments. Wea. Forecasting, 30, 591612, doi:10.1175/WAF-D-14-00105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeAngelis, A., F. Dominguez, Y. Fan, A. Robock, M. D. Kustu, and D. Robinson, 2010: Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J. Geophys. Res., 115, D15115, doi:10.1029/2010JD013892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Döll, P., H. Hoffmann-Dobrev, F. T. Portmann, S. Siebert, A. Eicker, M. Rodell, G. Strassberg, and B. R. Scanlon, 2012: Impact of water withdrawals from groundwater and surface water on continental water storage variations. J. Geodyn., 59–60, 143156, doi:10.1016/j.jog.2011.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehlschlaeger, C., and M. Metz, 2014: GRASS GIS manual: r.watershed. GRASS GIS 7.0.0svn reference manual, Open Source Geospatial Foundation, accessed 11 February 2015. [Available online at http://grass.osgeo.org/grass70/manuals/r.watershed.html.]

  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., and Coauthors, 2011: Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett., 38, L03403, doi:10.1029/2010GL046442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faunt, C. C., Ed., 2009: Groundwater availability of the Central Valley aquifer, California. USGS Professional Paper 1766, 255 pp. [Available online at http://pubs.usgs.gov/pp/1766/.]

    • Crossref
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 1997: An analysis of the soil moisture–rainfall feedback, based on direct observations from Illinois. Water Resour. Res., 33, 725735, doi:10.1029/96WR03756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentine, P., D. Entekhabi, and J. Polcher, 2011: The diurnal behavior of evaporative fraction in the soil–vegetation–atmospheric boundary layer continuum. J. Hydrometeor., 12, 15301546, doi:10.1175/2011JHM1261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gesch, D. B., 2007: The National Elevation Dataset. Digital Elevation Model Technologies and Applications: The DEM Users Manual, D. Maune, Ed., American Society for Photogrammetry and Remote Sensing, 99–118.

  • Gesch, D. B., M. Oimoen, S. Greenlee, C. Nelson, M. Steuck, and D. Tyler, 2002: The National Elevation Dataset. Photogramm. Eng. Remote Sensing, 68, 511.

    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., P. L. Spencer, K. L. Elmore, D. J. Stensrud, R. M. Hluchan, and P. C. Burke, 2009: Radar reflectivity–based estimates of mixed layer depth. J. Atmos. Oceanic Technol., 26, 229239, doi:10.1175/2008JTECHA1091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., 2010: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 136, 14811496, doi:10.1002/qj.665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1990: The Step-Mountain Coordinate: Physical package. Mon. Wea. Rev., 118, 14291443, doi:10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The Step-Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

  • Jiang, X., G.-Y. Niu, and Z.-L. Yang, 2009: Impacts of vegetation and groundwater dynamics on warm season precipitation over the Central United States. J. Geophys. Res., 114, D06109, doi:10.1029/2008JD010756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, J. E., and C. S. Woodward, 2001: Newton–Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems. Adv. Water Resour., 24, 763774, doi:10.1016/S0309-1708(00)00075-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juang, J.-Y., A. Porporato, P. C. Stoy, M. S. Siqueira, A. C. Oishi, M. Detto, H.-S. Kim, and G. G. Katul, 2007: Hydrologic and atmospheric controls on initiation of convective precipitation events. Water Resour. Res., 43, W03421, doi:10.1029/2006WR004954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keune, J., F. Gasper, K. Goergen, A. Hense, P. Shrestha, M. Sulis, and S. Kollet, 2016: Studying the influence of groundwater representations on land surface–atmosphere feedbacks during the European heat wave in 2003. J. Geophys. Res. Atmos., 121, 13 30113 325, doi:10.1002/2016JD025426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., J. Walters, and M. Biggerstaff, 2006: Doppler profiler and radar observations of boundary layer variability during the landfall of Tropical Storm Gabrielle. J. Atmos. Sci., 63, 234251, doi:10.1175/JAS3608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollet, S. J., and R. M. Maxwell, 2006: Integrated surface–groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Adv. Water Resour., 29, 945958, doi:10.1016/j.advwatres.2005.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollet, S. J., and R. M. Maxwell, 2008: Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resour. Res., 44, W02402, doi:10.1029/2007WR006004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kueppers, L. M., and M. A. Snyder, 2012: Influence of irrigated agriculture on diurnal surface energy and water fluxes, surface climate, and atmospheric circulation in California. Climate Dyn., 38, 10171029, doi:10.1007/s00382-011-1123-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, M.-H., and J. S. Famiglietti, 2013: Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys. Res. Lett., 40, 301306, doi:10.1002/grl.50108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lobell, D., G. Bala, A. Mirin, T. Phillips, R. Maxwell, and D. Rotman, 2009: Regional differences in the influence of irrigation on climate. J. Climate, 22, 22482255, doi:10.1175/2008JCLI2703.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansoor, K., 2009: Estimation of subsurface hydraulic properties: LLNL Central Valley hydrologic model. Lawrence Livermore National Laboratory Rep., 9 pp.

  • Maxwell, R. M., 2013: A terrain-following grid transform and preconditioner for parallel, large-scale, integrated hydrologic modeling. Adv. Water Resour., 53, 109117, doi:10.1016/j.advwatres.2012.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., and N. L. Miller, 2005: Development of a coupled land surface and groundwater model. J. Hydrometeor., 6, 233247, doi:10.1175/JHM422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., and S. J. Kollet, 2008: Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat. Geosci., 1, 665669, doi:10.1038/ngeo315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., F. K. Chow, and S. J. Kollet, 2007: The groundwater–land-surface–atmosphere connection: Soil moisture effects on the atmospheric boundary layer in fully-coupled simulations. Adv. Water Resour., 30, 24472466, doi:10.1016/j.advwatres.2007.05.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., J. K. Lundquist, J. D. Mirocha, S. G. Smith, C. S. Woodward, and A. F. Tompson, 2011: Development of a coupled groundwater-atmosphere model. Mon. Wea. Rev., 139, 96116, doi:10.1175/2010MWR3392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

  • Miguez-Macho, G., Y. Fan, C. P. Weaver, R. Walko, and A. Robock, 2007: Incorporating water table dynamics in climate modeling: 2. Formulation, validation, and soil moisture simulation. J. Geophys. Res., 112, D13108, doi:10.1029/2006JD008112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA, 2001: MCD12Q1: Land cover type yearly l3 global 500 m SIN grid. NASA EOSDIS Land Processes DAAC, accessed 10 June 2016. [Available online at https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1.]

  • NCEP, 2005: NCEP North American Regional Reanalysis (NARR). Research Data Archive at NCAR, accessed 1 July 2015. [Available online at http://rda.ucar.edu/datasets/ds608.0/.]

  • Patton, E. G., P. P. Sullivan, and C.-H. Moeng, 2005: The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J. Atmos. Sci., 62, 20782097, doi:10.1175/JAS3465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, J., M. Borsche, Y. Liu, and A. Loew, 2013: How representative are instantaneous evaporative fraction measurements of daytime fluxes? Hydrol. Earth Syst. Sci., 17, 39133919, doi:10.5194/hess-17-3913-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinn, P., K. Beven, and A. Culf, 1995: The introduction of macroscale hydrological complexity into land surface-atmosphere transfer models and the effect on planetary boundary layer development. J. Hydrol., 166, 421444, doi:10.1016/0022-1694(94)05090-K.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahman, M., M. Sulis, and S. J. Kollet, 2015: The subsurface–land surface–atmosphere connection under convective conditions. Adv. Water Resour., 83, 240249, doi:10.1016/j.advwatres.2015.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rihani, J. F., R. M. Maxwell, and F. K. Chow, 2010: Coupling groundwater and land surface processes: Idealized simulations to identify effects of terrain and subsurface heterogeneity on land surface energy fluxes. Water Resour. Res., 46, W12523, doi:10.1029/2010WR009111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rihani, J. F., F. K. Chow, and R. M. Maxwell, 2015: Isolating effects of terrain and soil moisture heterogeneity on the atmospheric boundary layer: Idealized simulations to diagnose land–atmosphere feedbacks. J. Adv. Model. Earth Syst., 7, 915937, doi:10.1002/2014MS000371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scanlon, B. R., C. C. Faunt, L. Longuevergne, R. C. Reedy, W. M. Alley, V. L. McGuire, and P. B. McMahon, 2012: Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA, 109, 93209325, doi:10.1073/pnas.1200311109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seck, A., C. Welty, and R. M. Maxwell, 2015: Spin-up behavior and effects of initial conditions for an integrated hydrologic model. Water Resour. Res., 51, 21882210, doi:10.1002/2014WR016371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seuffert, G., P. Gross, C. Simmer, and E. F. Wood, 2002: The influence of hydrologic modeling on the predicted local weather: Two-way coupling of a mesoscale weather prediction model and a land surface hydrologic model. J. Hydrometeor., 3, 505523, doi:10.1175/1525-7541(2002)003<0505:TIOHMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrestha, P., M. Sulis, M. Masbou, S. Kollet, and C. Simmer, 2014: A scale-consistent terrestrial systems modeling platform based on COSMO, CLM, and ParFlow. Mon. Wea. Rev., 142, 34663483, doi:10.1175/MWR-D-14-00029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrestha, P., M. Sulis, C. Simmer, and S. Kollet, 2015: Impacts of grid resolution on surface energy fluxes simulated with an integrated surface–groundwater flow model. Hydrol. Earth Syst. Sci., 19, 43174326, doi:10.5194/hess-19-4317-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., Ed., 1988: An Introduction to Boundary Layer Meteorology. Springer, 670 pp.

    • Crossref
    • Export Citation
  • Stull, R. B., 1991: Static stability—An update. Bull. Amer. Meteor. Soc., 72, 15211529, doi:10.1175/1520-0477(1991)072<1521:SSU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szilagyi, J., V. A. Zlotnik, and J. Jozsa, 2013: Net recharge vs. depth to groundwater relationship in the Platte River Valley of Nebraska, United States. Ground Water, 51, 945951, doi:10.1111/gwat.12007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wada, Y., L. P. H. van Beek, C. M. van Kempen, J. W. T. M. Reckman, S. Vasak, and M. F. P. Bierkens, 2010: Global depletion of groundwater resources. Geophys. Res. Lett., 37, L20402, doi:10.1029/2010GL044571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wada, Y., L. P. H. van Beek, and M. F. P. Bierkens, 2012: Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resour. Res., 48, W00L06, doi:10.1029/2011WR010562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walser, A., and C. Schär, 2004: Convection-resolving precipitation forecasting and its predictability in Alpine river catchments. J. Hydrol., 288, 5773, doi:10.1016/j.jhydrol.2003.11.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walser, A., D. Lüthi, and C. Schär, 2004: Predictability of precipitation in a cloud-resolving model. Mon. Wea. Rev., 132, 560577, doi:10.1175/1520-0493(2004)132<0560:POPIAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Williams, J. L., and R. M. Maxwell, 2011: Propagating subsurface uncertainty to the atmosphere using fully coupled stochastic simulations. J. Hydrometeor., 12, 690701, doi:10.1175/2011JHM1363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, B., J. C. H. Fung, A. Chan, and A. Lau, 2012: Evaluation of nonlocal and local planetary boundary layer schemes in the WRF Model. J. Geophys. Res., 117, D12103, doi:10.1029/2011JD017080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • York, J. P., M. Person, W. J. Gutowski, and T. C. Winter, 2002: Putting aquifers into atmospheric simulation models: An example from the Mill Creek watershed, northeastern Kansas. Adv. Water Resour., 25, 221238, doi:10.1016/S0309-1708(01)00021-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 269 146 26
PDF Downloads 212 140 35

Effects of Water-Table Configuration on the Planetary Boundary Layer over the San Joaquin River Watershed, California

View More View Less
  • 1 Integrated GroundWater Modeling Center, Hydrologic Science and Engineering Program, Department of Geology and Geological Engineering, and Climate Change, Water and Society Integrative Graduate Education and Research Traineeship, Colorado School of Mines, Golden, Colorado
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
Restricted access

Abstract

The boundary layer, land surface, and subsurface are important coevolving components of hydrologic systems. While previous studies have examined the connections between soil moisture, groundwater, and the atmosphere, the atmospheric response to regional water-table drawdown has received less attention. To address this question, a coupled hydrologic–atmospheric model [Parallel Flow hydrologic model (ParFlow) and WRF] was used to simulate the San Joaquin River watershed of central California. This study focuses specifically on the planetary boundary layer (PBL) in simulations with two imposed water-table configurations: a high water table mimicking natural conditions and a lowered water table reflecting historic groundwater extraction in California’s Central Valley, although effect of irrigation was not simulated. An ensemble of simulations including three boundary layer schemes and six initial conditions was performed for both water-table conditions to assess conceptual and initial condition uncertainty. Results show that increased regional water-table depth is associated with a significant increase in peak PBL height for both initial condition and boundary layer scheme conditions, although the choice of scheme interacts to affect the magnitude of peak PBL height change. Analysis of simulated land surface fluxes shows the change in PBL height can be attributed to decreasing midday evaporative fraction under lowered water-table conditions. Furthermore, the sensitivity of PBL height to changes in water-table depth appears to depend on local water-table variation within 10 m of the land surface and the regional average water-table depth. Finally, soil moisture changes associated with lowered water tables are linked to changes in PBL circulation as indicated by vertical winds and turbulence kinetic energy.

Current affiliation: Technical Service Center, U.S. Bureau of Reclamation, Denver, Colorado.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: James Gilbert, jmgilbert@usbr.gov

Abstract

The boundary layer, land surface, and subsurface are important coevolving components of hydrologic systems. While previous studies have examined the connections between soil moisture, groundwater, and the atmosphere, the atmospheric response to regional water-table drawdown has received less attention. To address this question, a coupled hydrologic–atmospheric model [Parallel Flow hydrologic model (ParFlow) and WRF] was used to simulate the San Joaquin River watershed of central California. This study focuses specifically on the planetary boundary layer (PBL) in simulations with two imposed water-table configurations: a high water table mimicking natural conditions and a lowered water table reflecting historic groundwater extraction in California’s Central Valley, although effect of irrigation was not simulated. An ensemble of simulations including three boundary layer schemes and six initial conditions was performed for both water-table conditions to assess conceptual and initial condition uncertainty. Results show that increased regional water-table depth is associated with a significant increase in peak PBL height for both initial condition and boundary layer scheme conditions, although the choice of scheme interacts to affect the magnitude of peak PBL height change. Analysis of simulated land surface fluxes shows the change in PBL height can be attributed to decreasing midday evaporative fraction under lowered water-table conditions. Furthermore, the sensitivity of PBL height to changes in water-table depth appears to depend on local water-table variation within 10 m of the land surface and the regional average water-table depth. Finally, soil moisture changes associated with lowered water tables are linked to changes in PBL circulation as indicated by vertical winds and turbulence kinetic energy.

Current affiliation: Technical Service Center, U.S. Bureau of Reclamation, Denver, Colorado.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: James Gilbert, jmgilbert@usbr.gov
Save