• Boé, J., L. Terray, F. Habets, and E. Martin, 2007: Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol., 27, 16431656, doi:10.1002/joc.1602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boone, A., and Coauthors, 2004: The Rhône-Aggregation Land Surface Scheme intercomparison project: An overview. J. Climate, 17, 187208, doi:10.1175/1520-0442(2004)017<0187:TRLSSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouilloud, L., and Coauthors, 2009: Road surface condition forecasting in France. J. Appl. Meteor. Climatol., 48, 25132527, doi:10.1175/2009JAMC1900.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brun, E., P. David, M. Sudul, and G. Brunot, 1992: A numerical model to simulate snowcover stratigraphy for operational avalanche forecasting. J. Glaciol., 38, 1322, doi:10.1017/S0022143000009552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brun, E., and Coauthors, 2011: Snow/atmosphere coupled simulation at Dome C, Antarctica. J. Glaciol., 57, 721736, doi:10.3189/002214311797409794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carmagnola, C., S. Morin, M. Lafaysse, F. Dominé, B. Lesaffre, Y. Lejeune, G. Picard, and L. Arnaud, 2014: Implementation and evaluation of prognostic representations of the optical diameter of snow in the SURFEX/ISBA–Crocus detailed snowpack model. Cryosphere, 8, 417437, doi:10.5194/tc-8-417-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castebrunet, H., N. Eckert, G. Giraud, Y. Durand, and S. Morin, 2014: Projected changes of snow conditions and avalanche activity in a warming climate: A case study in the French Alps over the 2020–2050 and 2070–2100 periods. Cryosphere, 8, 16731697, doi:10.5194/tc-8-1673-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., C. Freydier, J. Geleyn, F. Rabier, and M. Rochas, 1991: The Arpege project at Météo-France. Proc. Seminar on Numerical Methods in Atmospheric Models, Vol. 2, Reading, United Kingdom, ECMWF, 193–231. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/1991/8798-arpege-project-meteo-france.pdf.]

  • Coustau, M., E. Martin, C. Soci, E. Bazile, and F. Besson, 2014: Evaluation of the MESCAN system in particular for snow (using the SURFEX off-line simulation driven by MESCAN). EURO4M Project Rep., 28 pp. [Available online at http://www.euro4m.eu/downloads/D2.11_Evaluation%20of%20the%20newly%20developed%20MESAN-SAFRAN%20system%20in%20particular%20for%20snow.pdf.]

  • Crochet, P., 2007: A study of regional precipitation trends in Iceland using a high-quality gauge network and ERA-40. J. Climate, 20, 46594677, doi:10.1175/JCLI4255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crochet, P., T. Jóhannesson, T. Jónsson, O. Sigurosson, H. Björnsson, F. Pálsson, and I. Barstad, 2007: Estimating the spatial distribution of precipitation in Iceland using a linear model of orographic precipitation. J. Hydrometeor., 8, 12851306, doi:10.1175/2007JHM795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 33853396, doi:10.1256/qj.05.108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominé, F., S. Morin, E. Brun, M. Lafaysse, and C. Carmagnola, 2013: Seasonal evolution of snow permeability under equi-temperature and temperature-gradient conditions. Cryosphere, 7, 19151929, doi:10.5194/tc-7-1915-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dumont, M., and Coauthors, 2014: Contribution of light-absorbing impurities in snow to Greenland’s darkening since 2009. Nat. Geosci., 7, 509512, doi:10.1038/ngeo2180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durand, Y., E. Brun, L. Mrindol, G. Guyomarch, B. Lesaffre, and E. Martin, 1993: A meteorological estimation of relevant parameters for snow models. Ann. Glaciol., 18, 6571, doi:10.1017/S0260305500011277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durand, Y., G. Giraud, E. Brun, L. Mérindol, and E. Martin, 1999: A computer-based system simulating snowpack structures as a tool for regional avalanche forecasting. J. Glaciol., 45, 469484, doi:10.1017/S0022143000001337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durand, Y., G. Giraud, M. Laternser, P. Etchevers, L. Mérindol, and B. Lesaffre, 2009a: Reanalysis of 47 years of climate in the French Alps (1958–2005): Climatology and trends for snow cover. J. Appl. Meteor. Climatol., 48, 24872512, doi:10.1175/2009JAMC1810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durand, Y., M. Laternser, G. Giraud, P. Etchevers, B. Lesaffre, and L. Mérindol, 2009b: Reanalysis of 44 yr of climate in the French Alps (1958–2002): Methodology, model validation, climatology, and trends for air temperature and precipitation. J. Appl. Meteor. Climatol., 48, 429449, doi:10.1175/2008JAMC1808.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essery, R., S. Morin, Y. Lejeune, and C. B. Ménard, 2013: A comparison of 1701 snow models using observations from an alpine site. Adv. Water Resour., 55, 131148, doi:10.1016/j.advwatres.2012.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Etchevers, P., and E. Martin, 2002: Impact d’un changement climatique sur le manteau neigeux et l’hydrologie des bassins versants de montagne. Colloque Int. L’eau en montagne, Megève, France, Réseau International des Organismes de Bassin, 8 pp. [Available online at http://www.riob.org/IMG/pdf/Etchevers-2.pdf.]

  • Gascoin, S., O. Hagolle, M. Huc, L. Jarlan, J.-F. Dejoux, C. Szczypta, R. Marti, and R. Sánchez, 2015: A snow cover climatology for the Pyrenees from MODIS snow products. Hydrol. Earth Syst. Sci., 19, 23372351, doi:10.5194/hess-19-2337-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerbaux, M., C. Genthon, P. Etchevers, C. Vincent, and J. Dedieu, 2005: Surface mass balance of glaciers in the French Alps: Distributed modeling and sensitivity to climate change. J. Glaciol., 51, 561572, doi:10.3189/172756505781829133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giraud, G., 1992: MEPRA: An expert system for avalanche risk forecasting. Proc. Int. Snow Science Workshop, Breckenridge, CO, ISSW, 97–106. [Available online at http://arc.lib.montana.edu/snow-science/objects/issw-1992-097-104.pdf.]

  • Gottardi, F., C. Obled, J. Gailhard, and E. Paquet, 2012: Statistical reanalysis of precipitation fields based on ground network data and weather patterns: Application over French mountains. J. Hydrol., 432–433, 154167, doi:10.1016/j.jhydrol.2012.02.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, H., J. L. Wilson, and O. Makhnin, 2005: Geostatistical mapping of mountain precipitation incorporating autosearched effects of terrain and climatic characteristics. J. Hydrometeor., 6, 10181031, doi:10.1175/JHM448.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habets, F., and Coauthors, 2008: The SAFRAN–ISBA–MODCOU hydrometeorological model applied over France. J. Geophys. Res., 113, D06113, doi:10.1029/2007JD008548.

    • Search Google Scholar
    • Export Citation
  • Hevesi, J. A., A. L. Flint, and J. D. Istok, 1992a: Precipitation estimation in mountainous terrain using multivariate geostatistics. Part II: Isohyetal maps. J. Appl. Meteor., 31, 677688, doi:10.1175/1520-0450(1992)031<0677:PEIMTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hevesi, J. A., J. D. Istok, and A. L. Flint, 1992b: Precipitation estimation in mountainous terrain using multivariate geostatistics. Part I: Structural analysis. J. Appl. Meteor., 31, 661676, doi:10.1175/1520-0450(1992)031<0661:PEIMTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., and V. Levizzani, 2011: Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci., 15, 11091116, doi:10.5194/hess-15-1109-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucera, P. A., E. E. Ebert, F. J. Turk, V. Levizzani, D. Kirschbaum, F. J. Tapiador, A. Loew, and M. Borsche, 2013: Precipitation from space: Advancing Earth system science. Bull. Amer. Meteor. Soc., 94, 365375, doi:10.1175/BAMS-D-11-00171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kyriakidis, P. C., J. Kim, and N. L. Miller, 2001: Geostatistical mapping of precipitation from rain gauge data using atmospheric and terrain characteristics. J. Appl. Meteor., 40, 18551877, doi:10.1175/1520-0450(2001)040<1855:GMOPFR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafaysse, M., B. Hingray, P. Etchevers, E. Martin, and C. Obled, 2011: Influence of spatial discretization, underground water storage and glacier melt on a physically-based hydrological model of the Upper Durance River basin. J. Hydrol., 403, 116129, doi:10.1016/j.jhydrol.2011.03.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafaysse, M., and Coauthors, 2013: Towards a new chain of models for avalanche hazard forecasting in French mountain ranges, including low altitude mountains. Proc. Int. Snow Science Workshop, Grenoble–Chamonix Mont-Blanc, France, ISSW, 4 pp. [Available online at http://arc.lib.montana.edu/snow-science/objects/ISSW13_paper_O1-02.pdf.]

  • Lafaysse, M., B. Hingray, A. Mezghani, J. Gailhard, and L. Terray, 2014: Internal variability and model uncertainty components in future hydrometeorological projections: The Alpine Durance basin. Water Resour. Res., 50, 33173341, doi:10.1002/2013WR014897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lejeune, Y., J.-M. Bertrand, P. Wagnon, and S. Morin, 2013: A physically based model of the year-round surface energy and mass balance of debris-covered glaciers. J. Glaciol., 59, 327344, doi:10.3189/2013JoG12J149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mair, A., and A. Fares, 2011: Comparison of rainfall interpolation methods in a mountainous region of a tropical island. J. Hydrol. Eng., 16, 371383, doi:10.1061/(ASCE)HE.1943-5584.0000330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mary, A., and Coauthors, 2013: Intercomparison of retrieval algorithms for the specific surface area of snow from near-infrared satellite data in mountainous terrain, and comparison with the output of a semi-distributed snowpack model. Cryosphere, 7, 741761, doi:10.5194/tc-7-741-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mérindol, L., Y. Durand, B. Fradon, R. Tzanos, and S. Samuel, 2013: Use of RHYTMME radar images including X band data, to improve hourly disaggregation of SAFRAN daily precipitation analyse. Application on Mercantour and Haut-Var/Haut-Verdon. Proc. Int. Snow Science Workshop, Grenoble–Chamonix Mont-Blanc, France, ISSW, 8 pp. [Available online at http://arc.lib.montana.edu/snow-science/objects/ISSW13_paper_P2-08.pdf.]

  • Morin, S., F. Dominé, A. Dufour, Y. Lejeune, B. Lesaffre, J.-M. Willemet, C. Carmagnola, and H.-W. Jacobi, 2013: Measurements and modeling of the vertical profile of specific surface area of an alpine snowpack. Adv. Water Resour., 55, 111120, doi:10.1016/j.advwatres.2012.01.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, doi:10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parent-du Châtelet, J., 2003: Aramis, le réseau français de radars pour la surveillance des précipitations. Meteorologie, 40, 4452, doi:10.4267/2042/36263.

    • Search Google Scholar
    • Export Citation
  • Prudhomme, C., and D. W. Reed, 1999: Mapping extreme rainfall in a mountainous region using geostatistical techniques: A case study in Scotland. Int. J. Climatol., 19, 13371356, doi:10.1002/(SICI)1097-0088(199910)19:12<1337::AID-JOC421>3.0.CO;2-G.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quéno, L., V. Vionnet, I. Dombrowski-Etchevers, M. Lafaysse, M. Dumont, and F. Karbou, 2016: Snowpack modelling in the Pyrenees driven by kilometric resolution meteorological forecasts. Cryosphere, 10, 15711589, doi:10.5194/tc-10-1571-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quintana-Seguí, P., and Coauthors, 2008: Analysis of near-surface atmospheric variables: Validation of the SAFRAN analysis over France. J. Appl. Meteor. Climatol., 47, 92107, doi:10.1175/2007JAMC1636.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahimi, S., M. A. Gholami Sefidkouhi, M. Raeini-Sarjaz, and M. Valipour, 2015: Estimation of actual evapotranspiration by using MODIS images (a case study: Tajan catchment). Arch. Agron. Soil Sci., 61, 695709, doi:10.1080/03650340.2014.944904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raleigh, M., J. Lundquist, and M. Clark, 2015: Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework. Hydrol. Earth Syst. Sci., 19, 31533179, doi:10.5194/hess-19-3153-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rousselot, M., Y. Durand, G. Giraud, L. Mérindol, I. Dombrowski-Etchevers, and M. Déqué, 2012: Statistical adaptation of ALADIN RCM outputs over the French Alps—Application to future climate and snow cover. Cryosphere, 6, 785805, doi:10.5194/tc-6-785-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schirmer, M., and B. Jamieson, 2015: Verification of analysed and forecasted winter precipitation in complex terrain. Cryosphere, 9, 587601, doi:10.5194/tc-9-587-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidli, J., C. Schmutz, C. Frei, H. Wanner, and C. Schär, 2002: Mesoscale precipitation variability in the region of the European Alps during the 20th century. Int. J. Climatol., 22, 10491074, doi:10.1002/joc.769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwab, M., 2000: The Alpine precipitation climate: Evaluation of high-resolution analysis scheme using comprehensive rain-gauge data. Ph.D. thesis, Swiss Federal Institute of Technology of Zurich, doi:10.3929/ethz-a-004121274.

    • Crossref
    • Export Citation
  • Seity, Y., P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, and V. Masson, 2011: The AROME-France convective-scale operational model. Mon. Wea. Rev., 139, 976991, doi:10.1175/2010MWR3425.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sirguey, P., R. Mathieu, and Y. Arnaud, 2009: Subpixel monitoring of the seasonal snow cover with MODIS at 250 m spatial resolution in the Southern Alps of New Zealand: Methodology and accuracy assessment. Remote Sens. Environ., 113, 160181, doi:10.1016/j.rse.2008.09.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soci, C., E. Bazile, F. Besson, and T. Landelius, 2016: High-resolution precipitation re-analysis system for climatological purposes. Tellus, 68A, 29879, doi:10.3402/tellusa.v68.29879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spandre, P., H. François, S. Morin, and E. George-Marcelpoil, 2015: Dynamique de la neige de culture dans les Alpes Françaises. Contexte climatique et état des lieux. Rev. Geogr. Alp., 103 (2), doi:10.4000/rga.2840.

    • Search Google Scholar
    • Export Citation
  • Tabary, P., 2007: The new French operational radar rainfall product. Part I: Methodology. Wea. Forecasting, 22, 393408, doi:10.1175/WAF1004.1.

  • Tabary, P., J. Desplats, K. Do Khac, F. Eideliman, C. Gueguen, and J. Heinrich, 2007: The new French operational radar rainfall product. Part II: Validation. Wea. Forecasting, 22, 409427, doi:10.1175/WAF1005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tabary, P., B. Fradon, and A.-A. Boumahmoud, 2013: La polarimétrie radar à Météo-France. Meteorologie, 83, 5967, doi:10.4267/2042/52055.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., and Coauthors, 2012: Global precipitation measurement: Methods, datasets and applications. Atmos. Res., 104–105, 7097, doi:10.1016/j.atmosres.2011.10.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valipour, M., 2015: Long-term runoff study using SARIMA and ARIMA models in the United States. Meteor. Appl., 22, 592598, doi:10.1002/met.1491.

  • Valipour, M., 2016: Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms. Meteor. Appl., 23, 91100, doi:10.1002/met.1533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valipour, M., and S. Eslamian, 2014: Analysis of potential evapotranspiration using 11 modified temperature-based models. Int. J. Hydrol. Sci. Technol., 4, 192207, doi:10.1504/IJHST.2014.067733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valipour, M., M. E. Banihabib, and S. M. R. Behbahani, 2013: Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol., 476, 433441, doi:10.1016/j.jhydrol.2012.11.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vidal, J., E. Martin, L. Franchistéguy, F. Habets, J.-M. Soubeyroux, M. Blanchard, and M. Baillon, 2010a: Multilevel and multiscale drought reanalysis over France with the SAFRAN–ISBA–MODCOU hydrometeorological suite. Hydrol. Earth Syst. Sci., 14, 459478, doi:10.5194/hess-14-459-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vidal, J., E. Martin, L. Franchistéguy, M. Baillon, and J.-M. Soubeyroux, 2010b: A 50-year high-resolution atmospheric reanalysis over France with the SAFRAN system. Int. J. Climatol., 30, 16271644, doi:10.1002/joc.2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vionnet, V., E. Brun, S. Morin, A. Boone, S. Faroux, P. L. Moigne, E. Martin, and J.-M. Willemet, 2012: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2. Geosci. Model Dev., 5, 773791, doi:10.5194/gmd-5-773-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vionnet, V., E. Martin, V. Masson, G. Guyomarc’h, F. N. Bouvet, A. Prokop, Y. Durand, and C. Lac, 2014: Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model. Cryosphere, 8, 395415, doi:10.5194/tc-8-395-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westrelin, S., P. Mériaux, S. Dalle, B. Fradon, and G. Jamet, 2013: Déploiement d’un réseau de radars pour anticiper les risques hydrométéorologiques. Meteorologie, 83, 5967, doi:10.4267/2042/52056.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 219 86 5
PDF Downloads 172 63 4

Precipitation Analysis over the French Alps Using a Variational Approach and Study of Potential Added Value of Ground-Based Radar Observations

View More View Less
  • 1 CNRM, UMR 3589, Météo-France/CNRS, Toulouse, France
  • | 2 CNRM, UMR 3589, Météo-France/CNRS, Saint Martin d’Hères, France
  • | 3 CNRM, UMR 3589, Météo-France/CNRS, Toulouse, France
  • | 4 CNRM, UMR 3589, Météo-France/CNRS, Saint Martin d’Hères, France
  • | 5 CLS, Toulouse, France
Restricted access

Abstract

A one-dimensional variational data assimilation (1DVar) method to retrieve profiles of precipitation in mountainous terrain is described. The method combines observations from the French Alpine region rain gauges and precipitation estimates from weather radars with background information from short-range numerical weather prediction forecasts in an optimal way. The performance of this technique is evaluated using measurements of precipitation and of snow depth during two years (2012/13 and 2013/14). It is shown that the 1DVar model allows an effective assimilation of measurements of different types, including rain gauge and radar-derived precipitation. The use of radar-derived precipitation rates over mountains to force the numerical snowpack model Crocus significantly reduces the bias and standard deviation with respect to independent snow depth observations. The improvement is particularly significant for large rainfall or snowfall events, which are decisive for avalanche hazard forecasting. The use of radar-derived precipitation rates at an hourly time step improves the time series of precipitation analyses and has a positive impact on simulated snow depths.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Camille Birman, camille.birman@meteo.fr

Abstract

A one-dimensional variational data assimilation (1DVar) method to retrieve profiles of precipitation in mountainous terrain is described. The method combines observations from the French Alpine region rain gauges and precipitation estimates from weather radars with background information from short-range numerical weather prediction forecasts in an optimal way. The performance of this technique is evaluated using measurements of precipitation and of snow depth during two years (2012/13 and 2013/14). It is shown that the 1DVar model allows an effective assimilation of measurements of different types, including rain gauge and radar-derived precipitation. The use of radar-derived precipitation rates over mountains to force the numerical snowpack model Crocus significantly reduces the bias and standard deviation with respect to independent snow depth observations. The improvement is particularly significant for large rainfall or snowfall events, which are decisive for avalanche hazard forecasting. The use of radar-derived precipitation rates at an hourly time step improves the time series of precipitation analyses and has a positive impact on simulated snow depths.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Camille Birman, camille.birman@meteo.fr
Save