• Adam, J. C., A. F. Hamlet, and D. P. Lettenmaier, 2009: Implications of global climate change for snowmelt in the 21st century. Hydrol. Processes, 23, 962972, doi:10.1002/hyp.7201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aguado, E., 1985: Radiation balances of melting snow covers at an open site in the central Sierra Nevada, California. Water Resour. Res., 21, 16491654, doi:10.1029/WR021i011p01649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alaka, M. A., and R. C. Elvander, 1972: Optimum interpolation from observations of mixed quality. Mon. Wea. Rev., 100, 612624, doi:10.1175/1520-0493(1972)100<0612:OIFOOM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartholomé, E., and A. S. Belward, 2005: GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens., 26, 19591977, doi:10.1080/01431160412331291297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartlett, P. A., and D. L. Verseghy, 2015: Modified treatment of intercepted snow improves the simulated forest albedo in the Canadian Land Surface Scheme. Hydrol. Processes, 29, 32083226, doi:10.1002/hyp.10431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartlett, P. A., M. D. MacKay, and D. L. Verseghy, 2006: Modified snow algorithms in the Canadian Land Surface Scheme: Model runs and sensitivity analysis at three boreal forest stands. Atmos.–Ocean, 44, 207222, doi:10.3137/ao.440301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bavay, M., M. Lehning, T. Jonas, and H. Löwe, 2009: Simulations of future snow cover and discharge in Alpine headwater catchments. Hydrol. Processes, 23, 95108, doi:10.1002/hyp.7195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boone, A., and Coauthors, 2004: The Rhône-Aggregation Land Surface Scheme intercomparison project: An overview. J. Climate, 17, 187208, doi:10.1175/1520-0442(2004)017<0187:TRLSSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowling, L. C., and Coauthors, 2003: Simulation of high latitude hydrological processes in the Torne–Kalix basin, PILPS phase 2(e), 1: Experiment description and summary intercomparisons. Global Planet. Change, 38, 130, doi:10.1016/S0921-8181(03)00003-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brasnett, B., 1999: A global analysis of snow depth for numerical weather prediction. J. Appl. Meteor., 38, 726740, doi:10.1175/1520-0450(1999)038<0726:AGAOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. D., 2010: Analysis of snow cover variability and change in Quebec, 1948–2005. Hydrol. Processes, 24, 19291954, doi:10.1002/hyp.7565.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., and P. Mote, 2009: The response of Northern Hemisphere snow cover to a changing climate. J. Climate, 22, 21242145, doi:10.1175/2008JCLI2665.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. D., and B. Brasnett, 2010: Canadian Meteorological Centre (CMC) daily snow depth analysis data, version 1. Updated annually, National Snow and Ice Data Center, accessed 30 June 2016, doi:10.5067/W9FOYWH0EQZ3.

    • Crossref
    • Export Citation
  • Brown, R. D., and B. Brasnett, 2011: The Canadian Meteorological Centre global daily snow depth analysis, 1998–2011: Overview, experience and applications. Proc. 68th Eastern Snow Conf., Montreal, Canada, McGill University, 197–200. [Available online at http://www.easternsnow.org/proceedings/2011/brown_brasnett.pdf.]

  • Brown, R. D., P. A. Bartlett, M. MacKay, and D. L. Verseghy, 2006: Evaluation of snow cover in CLASS for SnowMIP. Atmos.–Ocean, 44, 223238, doi:10.3137/ao.440302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. D., C. Derksen, and L. Wang, 2010: A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008. J. Geophys. Res., 115, D16111, doi:10.1029/2010JD013975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruce, J. P., and R. H. Clark, 1980: Introduction to Hydrometeorology. Pergamon Press, 324 pp.

  • Brun, E., V. Vionnet, A. Boone, B. Decharme, Y. Peings, R. Valette, F. Karbou, and S. Morin, 2013: Simulation of northern Eurasian local snow depth, mass, and density using a detailed snowpack model and meteorological reanalyses. J. Hydrometeor., 14, 203219, doi:10.1175/JHM-D-12-012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caya, D., and R. Laprise, 1999: A semi-implicit semi-Lagrangian regional climate model: The Canadian RCM. Mon. Wea. Rev., 127, 341362, doi:10.1175/1520-0493(1999)127<0341:ASISLR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and D. Rind, 1991: The effect of snow cover on the climate. J. Climate, 4, 689706, doi:10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmhirn, I., and F. D. Eaton, 1975: Some characteristics of the albedo of snow. J. Appl. Meteor., 14, 375379, doi:10.1175/1520-0450(1975)014<0375:SCOTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diro, G. T., L. Sushama, A. Martynov, D. I. Jeong, D. L. Verseghy, and K. Winger, 2014: Land–atmosphere coupling over North America in CRCM5. J. Geophys. Res. Atmos., 119, 11 95511 972, doi:10.1002/2014JD021677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, J., J. P. Walker, and P. R. Houser, 2005: Factors affecting remotely sensed snow water equivalent uncertainty. Remote Sens. Environ., 97, 6882, doi:10.1016/j.rse.2005.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutra, E., G. Balsamo, P. Viterbo, P. M. A. Miranda, A. Beljaars, C. Schär, and K. Elder, 2010: An improved snow scheme for the ECMWF land surface model: Description and offline validation. J. Hydrometeor., 11, 899916, doi:10.1175/2010JHM1249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essery, R., 2013: Large-scale simulations of snow albedo masking by forests. Geophys. Res. Lett., 40, 55215525, doi:10.1002/grl.51008.

  • Essery, R., and Coauthors, 2009: SnowMIP2: An evaluation of forest snow process simulations. Bull. Amer. Meteor. Soc., 90, 11201135, doi:10.1175/2009BAMS2629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Etchevers, P., and Coauthors, 2004: Validation of the energy budget of an Alpine snowpack simulated by several snow models (SnowMIP project). Ann. Glaciol., 38, 150158, doi:10.3189/172756404781814825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, C. G., P. J. Kushner, A. Hall, and X. Qu, 2009: Circulation responses to snow albedo feedback in climate change. Geophys. Res. Lett., 36, L09702, doi:10.1029/2009GL038011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frigon, A., B. Music, and M. Slivitzky, 2010: Sensitivity of runoff and projected changes in runoff over Quebec to the update interval of lateral boundary conditions in the Canadian RCM. Meteor. Z., 19, 225236, doi:10.1127/0941-2948/2010/0453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganji, A., L. Sushama, D. L. Verseghy, and R. Harvey, 2015: On improving cold regions hydrological processes in the Canadian Land Surface Scheme. Theor. Appl. Climatol., 127, 4559, doi:10.1007/s00704-015-1618-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garnaud, C., L. Sushama, and D. L. Verseghy, 2015: Impact of interactive vegetation phenology on the Canadian RCM simulated climate over North America. Climate Dyn., 45, 14711492, doi:10.1007/s00382-014-2397-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gold, L. W., 1958: Changes in a shallow snow cover subject to a temperate climate. J. Glaciol., 3, 218222, doi:10.1017/S002214300002428X.

  • Gong, G., D. Entekhabi, J. Cohen, and D. Robinson, 2004: Sensitivity of atmospheric response to modeled snow anomaly characteristics. J. Geophys. Res., 109, D06107, doi:10.1029/2003JD004160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, D. K., G. A. Riggs, V. V. Salomonson, N. E. DiGirolamo, and K. J. Bayr, 2002: MODIS snow-cover products. Remote Sens. Environ., 83, 181194, doi:10.1016/S0034-4257(02)00095-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hedstrom, N. R., and J. W. Pomeroy, 1998: Measurements and modelling of snow interception in the boreal forest. Hydrol. Processes, 12, 16111625, doi:10.1002/(SICI)1099-1085(199808/09)12:10/11<1611::AID-HYP684>3.0.CO;2-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langlois, A., J. Bergeron, R. Brown, A. Royer, R. Harvey, A. Roy, L. Wang, and N. Thériault, 2014: Evaluation of CLASS 2.7 and 3.5 simulations of snow properties from the Canadian Regional Climate Model (CRCM4) over Québec, Canada. J. Hydrometeor., 15, 13251343, doi:10.1175/JHM-D-13-055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larue, F., A. Royer, D. de Sève, L. Lozac’h, A. Langlois, A. Roy, and C. Derksen, 2015: Preliminary validation analysis of the GlobSnow2 database over eastern Canada. Proc. 72nd Eastern Snow Conf., Sherbrooke, Québec, Canada, Jouvence, 129–131.

  • Longley, R. W., 1960: Snow depth and snow density at Resolute, Northwest Territories. J. Glaciol., 3, 733738, doi:10.1017/S0022143000018037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loranty, M. M., L. T. Berner, S. J. Goetz, Y. Jin, and J. T. Randerson, 2014: Vegetation controls on northern high latitude snow-albedo feedback: Observations and CMIP5 model simulations. Global Change Biol., 20, 594606, doi:10.1111/gcb.12391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mackay, M. D., 2012: A process-oriented small lake scheme for coupled climate modeling applications. J. Hydrometeor., 13, 19111924, doi:10.1175/JHM-D-11-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, M., 1977: Engineering properties of snow. J. Glaciol., 19, 1566, doi:10.1017/S002214300002921X.

  • Milewska, E. J., R. F. Hopkinson, and A. Niitsoo, 2005: Evaluation of geo-referenced grids of 1961–1990 Canadian temperature and precipitation normals. Atmos.–Ocean, 43, 4975, doi:10.3137/ao.430104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D. A., and R. A. White, 1998: A coterminous United States multilayer soil characteristics dataset for regional climate and hydrology modelling. Earth Interact., 2, doi:10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munro, D. S., L. M. Bellisario, and D. L. Verseghy, 2000: Measuring and modelling the seasonal climatic regime of a temperate wooded wetland. Atmos.–Ocean, 38, 227249, doi:10.1080/07055900.2000.9649647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Music, B., and D. Caya, 2007: Evaluation of the hydrological cycle over the Mississippi River basin as simulated by the Canadian Regional Climate Model (CRCM). J. Hydrometeor., 8, 969988, doi:10.1175/JHM627.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namazi, M., K. von Salzen, and J. N. S. Cole, 2015: Simulation of black carbon in snow and its climate impact in the Canadian Global Climate Model. Atmos. Chem. Phys., 15, 10 88710 904, doi:10.5194/acp-15-10887-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nijssen, B., and Coauthors, 2003: Simulation of high latitude hydrological processes in the Torne–Kalix basin, PILPS phase 2(e), 2: Comparison of model results with observations. Global Planet. Change, 38, 3153, doi:10.1016/S0921-8181(03)00004-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parajka, J., S. Dadson, T. Lafon, and R. Essery, 2010: Evaluation of snow cover and depth simulated by a land surface model using detailed regional snow observations from Austria. J. Geophys. Res., 115, D24117, doi:10.1029/2010JD014086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedersen, C. A., and J. G. Winther, 2005: Intercomparison and validation of snow albedo parameterization schemes in climate models. Climate Dyn., 25, 351362, doi:10.1007/s00382-005-0037-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., and D. M. Gray, 1995: Snowcover accumulation, relocation and management. National Hydrology Research Institute Science Rep. 7, Environment Canada, 144 pp.

  • Pomeroy, J. W., and L. Li, 2000: Prairie and Arctic areal snow cover mass balance using a blowing snow model. J. Geophys. Res., 105, 26 61926 634, doi:10.1029/2000JD900149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., D. M. Gray, K. R. Shook, B. Toth, R. L. H. Essery, A. Pietroniro, and N. Hedstrom, 1998: An evaluation of snow accumulation and ablation processes for land surface modelling. Hydrol. Processes, 12, 23392367, doi:10.1002/(SICI)1099-1085(199812)12:15<2339::AID-HYP800>3.0.CO;2-L.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, X., and A. Hall, 2007: What controls the strength of snow-albedo feedback? J. Climate, 20, 39713981, doi:10.1175/JCLI4186.1.

  • Ramsay, B., 1998: The Interactive Multisensory Snow and Ice Mapping System. Hydrol. Processes, 12, 15371546, doi:10.1002/(SICI)1099-1085(199808/09)12:10/11<1537::AID-HYP679>3.0.CO;2-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, D. A., and G. Kukla, 1984: Albedo of a disappearing snow cover. J. Climate Appl. Meteor., 23, 16261634, doi:10.1175/1520-0450(1984)023<1626:AOADSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutter, N., and Coauthors, 2009: Evaluation of forest snow processes models (SnowMIP2). J. Geophys. Res., 114, D06111, doi:10.1029/2008JD011063.

  • Schaaf, C., and Coauthors, 2002: Global albedo, BRDF and nadir BRDF-adjusted reflectance products from MODIS. Remote Sens. Environ., 83, 135148, doi:10.1016/S0034-4257(02)00091-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlosser, C. A., and Coauthors, 2000: Simulations of a boreal grassland hydrology at Valdai, Russia: PILPS phase 2(d). Mon. Wea. Rev., 128, 301321, doi:10.1175/1520-0493(2000)128<0301:SOABGH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seol, K.-H., and S.-Y. Hong, 2009: Relationship between the Tibetan snow in spring and the East Asian summer monsoon in 2003: A global and regional modeling study. J. Climate, 22, 20952110, doi:10.1175/2008JCLI2496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, A. G., and Coauthors, 2001: The representation of snow in land-surface schemes: Results from PILPS 2(d). J. Hydrometeor., 2, 725, doi:10.1175/1525-7541(2001)002<0007:TROSIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturm, M., J. Holmgren, M. König, and K. Morris, 1997: The thermal conductivity of seasonal snow. J. Glaciol., 43, 2641, doi:10.1017/S0022143000002781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tabler, R. D., C. S. Benson, B. W. Santana, and P. Ganguly, 1990: Estimating snow transport from wind speed records: Estimates versus measurements at Prudhoe Bay, Alaska. Proc. 58th Western Snow Conf., Sacramento, CA, Western Snow Conference, 61–78. [Available online at https://westernsnowconference.org/node/620.]

  • Takala, M., K. Luojus, J. Pulliainen, C. Derksen, J. Lemmetyinen, J.-P. Kärnä, and B. Bojkov, 2011: Estimating Northern Hemisphere snow water equivalent for climate research through assimilation of spaceborne radiometer data and ground-based measurements. Remote Sens. Environ., 115, 35173529, doi:10.1016/j.rse.2011.08.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thackeray, C. W., C. G. Fletcher, and C. Derksen, 2014: The influence of canopy snow parameterizations on snow albedo feedback in boreal forest regions. J. Geophys. Res. Atmos., 119, 98109821, doi:10.1002/2014JD021858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thackeray, C. W., C. G. Fletcher, and C. Derksen, 2015: Quantifying the skill of CMIP5 models in simulating seasonal albedo and snow cover evolution. J. Geophys. Res. Atmos., 120, 58315849, doi:10.1002/2015JD023325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toure, A. M., M. Rodell, Z.-L. Yang, H. Beaudoing, E. Kim, Y. Zhang, and Y. Kwon, 2016: Evaluation of the snow simulations from the Community Land Model, version 4 (CLM4). J. Hydrometeor., 17, 153170, doi:10.1175/JHM-D-14-0165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., 1991: CLASS—A Canadian land surface scheme for GCMs. I. Soil model. Int. J. Climatol., 11, 111133, doi:10.1002/joc.3370110202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., 2000: The Canadian Land Surface Scheme (CLASS): Its history and future. Atmos.–Ocean, 38, 113, doi:10.1080/07055900.2000.9649637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., 2017: CLASS–The Canadian Land Surface Scheme (version 3.6.1). Environment and Climate Change Canada Internal Rep., 174 pp. [Available from Joe Melton, ECCC, .]

  • Verseghy, D. L., N. A. McFarlane, and M. Lazare, 1993: A Canadian land surface scheme for GCMs. II. Vegetation model and coupled runs. Int. J. Climatol., 13, 347370, doi:10.1002/joc.3370130402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Salzen, K., and Coauthors, 2013: The Canadian fourth generation Atmospheric Global Climate Model (CanAM4). Part I: Representation of physical processes. Atmos.–Ocean, 51, 104125, doi:10.1080/07055900.2012.755610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., M. MacKay, R. Brown, P. Bartlett, R. Harvey, and A. Langlois, 2014: Application of satellite data for evaluating the cold climate performance of the Canadian Regional Climate Model over Quebec, Canada. J. Hydrometeor., 15, 614630, doi:10.1175/JHM-D-13-086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., J. N. S. Cole, P. Bartlett, D. L. Verseghy, C. Derksen, R. Brown, and K. von Salzen, 2016: Investigating the spread in surface albedo for snow-covered forests in CMIP5 models. J. Geophys. Res. Atmos., 121, 11041119, doi:10.1002/2015JD023824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and X. Zeng, 2010: Evaluation of snow albedo in land models for weather and climate studies. J. Appl. Meteor. Climatol., 49, 363380, doi:10.1175/2009JAMC2134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, F., A. Kumar, W. Wang, H.-M. H. Juang, and M. Kanamitsu, 2001: Snow–albedo feedback and seasonal climate variability over North America. J. Climate, 14, 42454248, doi:10.1175/1520-0442(2001)014<4245:SAFASC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zadra, A., D. Caya, J. Coté, B. Dugas, C. Jones, R. Laprise, K. Winger, and L.-P. Caron, 2008: The next Canadian Regional Climate Model. Phys. Can., 64 (2), 7583.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., H. Matthes, A. Rinke, K. Klehmet, B. Heim, W. Dorn, D. Klaus, K. Dethloff, and B. Rockel, 2014: Evaluation of Arctic land snow cover characteristics, surface albedo, and temperature during the transition seasons from regional climate model simulations and satellite data. Adv. Meteor., 2014, 604157, doi:10.1155/2014/604157.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 289 155 12
PDF Downloads 184 92 6

Evaluation of CLASS Snow Simulation over Eastern Canada

View More View Less
  • 1 Climate Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
  • | 2 Environment and Climate Change Canada @ Ouranos, Montreal, Quebec, Canada
  • | 3 Climate Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
Restricted access

Abstract

The Canadian Land Surface Scheme (CLASS), version 3.6.1, was run offline for the period 1990–2011 over a domain centered on eastern Canada, driven by atmospheric forcing data dynamically downscaled from ERA-Interim using the Canadian Regional Climate Model. The precipitation inputs were adjusted to replicate the monthly average precipitation reported in the CRU observational database. The simulated fractional snow cover and the surface albedo were evaluated using NOAA Interactive Multisensor Snow and Ice Mapping System and MODIS data, and the snow water equivalent was evaluated using CMC, Global Snow Monitoring for Climate Research (GlobSnow), and Hydro-Québec products. The modeled fractional snow cover agreed well with the observational estimates. The albedo of snow-covered areas showed a bias of up to −0.15 in boreal forest regions, owing to neglect of subgrid-scale lakes in the simulation. In June, conversely, there was a positive albedo bias in the remaining snow-covered areas, likely caused by neglect of impurities in the snow. The validation of the snow water equivalent was complicated by the fact that the three observation-based datasets differed widely. Also, the downward adjustment of the forcing precipitation clearly resulted in a low snow bias in some regions. However, where the density of the observations was high, the CLASS snow model was deemed to have performed well. Sensitivity tests confirmed the satisfactory behavior of the current parameterizations of snow thermal conductivity, snow albedo refreshment threshold, and limiting snow depth and underlined the importance of snow interception by vegetation. Overall, the study demonstrated the necessity of using a wide variety of observation-based datasets for model validation.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

Corresponding author e-mail: Libo Wang, libo.wang@canada.ca

Abstract

The Canadian Land Surface Scheme (CLASS), version 3.6.1, was run offline for the period 1990–2011 over a domain centered on eastern Canada, driven by atmospheric forcing data dynamically downscaled from ERA-Interim using the Canadian Regional Climate Model. The precipitation inputs were adjusted to replicate the monthly average precipitation reported in the CRU observational database. The simulated fractional snow cover and the surface albedo were evaluated using NOAA Interactive Multisensor Snow and Ice Mapping System and MODIS data, and the snow water equivalent was evaluated using CMC, Global Snow Monitoring for Climate Research (GlobSnow), and Hydro-Québec products. The modeled fractional snow cover agreed well with the observational estimates. The albedo of snow-covered areas showed a bias of up to −0.15 in boreal forest regions, owing to neglect of subgrid-scale lakes in the simulation. In June, conversely, there was a positive albedo bias in the remaining snow-covered areas, likely caused by neglect of impurities in the snow. The validation of the snow water equivalent was complicated by the fact that the three observation-based datasets differed widely. Also, the downward adjustment of the forcing precipitation clearly resulted in a low snow bias in some regions. However, where the density of the observations was high, the CLASS snow model was deemed to have performed well. Sensitivity tests confirmed the satisfactory behavior of the current parameterizations of snow thermal conductivity, snow albedo refreshment threshold, and limiting snow depth and underlined the importance of snow interception by vegetation. Overall, the study demonstrated the necessity of using a wide variety of observation-based datasets for model validation.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

Corresponding author e-mail: Libo Wang, libo.wang@canada.ca
Save