• Adegoke, J. O., R. A. Pielke Sr., J. Eastman, R. Mahmood, and K. G. Hubbard, 2003: Impact of irrigation on midsummer surface fluxes and temperature under dry synoptic conditions: A regional atmospheric model study of the U.S. High Plains. Mon. Wea. Rev., 131, 556564, doi:10.1175/1520-0493(2003)131<0556:IOIOMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 334 pp.

  • Bechtold, P., E. Bazile, F. Guichard, P. Mascart, and E. Richard, 2001: A mass-flux convection scheme for regional and global models. Quart. J. Roy. Meteor. Soc., 127, 869886, doi:10.1002/qj.49712757309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, L. K., and E. I. Kassianov, 2008: Temporal variability of fair-weather cumulus statistics at the ACRF SGP site. J. Climate, 21, 33443358, doi:10.1175/2007JCLI2266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonfils, C., and D. Lobell, 2007: Empirical evidence for a recent slowdown in irrigation-induced cooling. Proc. Natl. Acad. Sci. USA, 104, 13 58213 587, doi:10.1073/pnas.0700144104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129, 587604, doi:10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeAngelis, A., F. Dominguez, Y. Fan, A. Robock, M. D. Kustu, and D. Robinson, 2010: Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J. Geophys. Res., 115, D15115, doi:10.1029/2010JD013892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., J. Polcher, K. Laval, and M. Sabre, 2003: Integrated parameterization of irrigation in the land surface model ORCHIDEE. Validation over Indian Peninsula. Geophys. Res. Lett., 30, 1986, doi:10.1029/2003GL018024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominguez, F., G. Miguez-Macho, and H. Hu, 2016: WRF with water vapor tracers: A study of moisture sources for the North American Monsoon. J. Hydrometeor., 17, 19151927, doi:10.1175/JHM-D-15-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and L. Mahrt, 1994: Daytime evolution of relative humidity at the boundary layer top. Mon. Wea. Rev., 122, 27092721, doi:10.1175/1520-0493(1994)122<2709:DEORHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and A. A. M. Holtslag, 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 8699, doi:10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1998: A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res., 34, 765776, doi:10.1029/97WR03499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, doi:10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gall, R., 1976: The effects of released latent heat in growing baroclinic waves. J. Atmos. Sci., 33, 16861701, doi:10.1175/1520-0469(1976)033<1686:TEORLH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haddeland, I., D. P. Lettenmaier, and T. Skaugen, 2006: Effects of irrigation on the water and energy balances of the Colorado and Mekong River basins. J. Hydrol., 324, 210223, doi:10.1016/j.jhydrol.2005.09.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, S., and Z. Yang, 2013: Cooling effect of agricultural irrigation over Xinjiang, northwest China from 1959 to 2006. Environ. Res. Lett., 8, 024039, doi:10.1088/1748-9326/8/2/024039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanson, B., L. J. Schwankl, and A. Fulton, 1999: Scheduling irrigations: When and how much water to apply. Water Management Series 3396, University of California, Davis, 202 pp.

  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteor Soc., 42, 129151.

  • Huang, X., and P. A. Ullrich, 2016: Irrigation impacts on California’s climate with the variable-resolution CESM. J. Adv. Model. Earth Syst., 8, 11511163, doi:10.1002/2016MS000656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., A. M. Rhoades, P. A. Ullrich, and C. M. Zarzycki, 2016: An evaluation of the variable-resolution CESM for modeling California’s climate. J. Adv. Model. Earth Syst., 8, 345369, doi:10.1002/2015MS000559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juang, J. Y., A. Porporato, P. C. Stoy, M. S. Siqueira, A. C. Oishi, M. Detto, H. S. Kim, and G. G. Katul, 2007: Hydrologic and atmospheric controls on initiation of convective precipitation events. Water Resour. Res, 43, W03421, doi:10.1029/2006WR004954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170, doi:10.1007/978-1-935704-13-3_16.

    • Crossref
    • Export Citation
  • Kanamaru, H., and M. Kanamitsu, 2008: Model diagnosis of nighttime minimum temperature warming during summer due to irrigation in the California Central Valley. J. Hydrometeor., 9, 10611072, doi:10.1175/2008JHM967.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., X. Gao, and S. Sorooshian, 2007: Modeling and analysis of the variability of the water cycle in the upper Rio Grande basin at high resolution. J. Hydrometeor., 8, 805824, doi:10.1175/JHM602.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., L. Li, K. E. Kunkel, M. Ting, and J. X. L. Wang, 2004: Regional climate model simulation of U.S. precipitation during 1982–2002. Part I: Annual cycle. J. Climate, 17, 35103529, doi:10.1175/1520-0442(2004)017<3510:RCMSOU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, M.-H., and J. S. Famiglietti, 2013: Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys. Res. Lett., 40, 301306, doi:10.1002/grl.50108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., D. E. Waliser, H. Lee, J. D. Neelin, B. R. Lintner, S. McGinnis, L. O. Mearns, and J. Kim, 2015: Evaluation of large-scale meteorological patterns associated with temperature extremes in the NARCCAP regional climate model simulations. Climate Dyn., 45, 32573274, doi:10.1007/s00382-015-2537-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcella, M. P., and E. A. B. Eltahir, 2014: Introducing an irrigation scheme to a regional climate model: A case study over West Africa. J. Climate, 27, 57085723, doi:10.1175/JCLI-D-13-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

  • Miguez-Macho, G., A. Rios-Entenza, and F. Dominguez, 2013: The impact of soil moisture and evapotranspiration fluxes on the spring water cycle in the Iberian Peninsula: A study with moisture tracers in WRF. 2013 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract H12B-05.

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ozdogan, M., M. Rodell, H. K. Beaudoing, and D. L. Toll, 2010: Simulating the effects of irrigation over the United States in a land surface model based on satellite-derived agricultural data. J. Hydrometeor., 11, 171184, doi:10.1175/2009JHM1116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, Y., M. Huang, B. Yang, and L. K. Berg, 2013: A modeling study of irrigation effects on surface fluxes and land–air–cloud interactions in the southern Great Plains. J. Hydrometeor., 14, 700721, doi:10.1175/JHM-D-12-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sacks, W. J., B. I. Cook, N. Buenning, S. Levis, and J. H. Helkowski, 2008: Effects of global irrigation on the near-surface climate. Climate Dyn., 33, 159175, doi:10.1007/s00382-008-0445-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitz, J. T., and S. L. Mullen, 1996: Water vapor transport associated with the summertime North American monsoon as depicted by ECMWF analyses. J. Climate, 9, 16211634, doi:10.1175/1520-0442(1996)009<1621:WVTAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, S., P. Doll, J. Hoogeveen, J. M. Faures, K. Frenken, and S. Feick, 2005: Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci., 9, 535547, doi:10.5194/hess-9-535-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, S., V. Henrich, K. Frenken, and J. Burke, 2013: Update of the Digital Global Map of Irrigation Areas to version 5. Project Rep., University of Bonn/FAO, 171 pp. [Available online at https://www.lap.uni-bonn.de/research/downloads/gmia/siebert_et_al_2013_gmia5.]

  • Skamarock, W., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Sorooshian, S., J. Li, K. L. Hsu, and X. Gao, 2011: How significant is the impact of irrigation on the local hydroclimate in California’s Central Valley? Comparison of model results with ground and remote-sensing data. J. Geophys. Res., 116, D06102, doi:10.1029/2010JD014775.

    • Search Google Scholar
    • Export Citation
  • Tripathi, O. P., and F. Dominguez, 2013: Effects of spatial resolution in the simulation of daily and subdaily precipitation in the southwestern US. J. Geophys. Res. Atmos., 118, 75917605, doi:10.1002/jgrd.50590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, H., Y. Qian, G. Lin, L. R. Leung, B. Yang, and Q. Fu, 2014: Parametric sensitivity and calibration for the Kain–Fritsch convective parameterization scheme in the WRF Model. Climate Res., 59, 135147, doi:10.3354/cr01213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, B., Y. Qian, G. Lin, R. Leung, and Y. Zhang, 2012: Some issues in uncertainty quantification and parameter tuning: A case study of convective parameterization scheme in the WRF regional climate model. Atmos. Chem. Phys., 12, 24092427, doi:10.5194/acp-12-2409-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, B., Y. Zhang, Y. Qian, J. Tang, and D. Liu, 2016: Climatic effects of irrigation over the Huang-Huai-Hai Plain in China simulated by the Weather Research and Forecasting Model. J. Geophys. Res. Atmos., 121, 22462264, doi:10.1002/2015JD023736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z., F. Dominguez, H. Gupta, X. Zeng, and L. Norman, 2016: Urban effects on regional climate: A case study in the Phoenix and Tucson “Sun Corridor.” Earth Interact., 20, doi:10.1175/EI-D-15-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J., J. D. Albertson, J. R. Rigby, and A. Porporato, 2015: Land and atmospheric controls on initiation and intensity of moist convection: CAPE dynamics and LCL crossings. Water Resour. Res., 51, 84768493, doi:10.1002/2015WR017286.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 620 324 31
PDF Downloads 515 287 17

Impact of Irrigation over the California Central Valley on Regional Climate

View More View Less
  • 1 Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona
  • | 2 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 3 School of Atmospheric Sciences, Nanjing University, Nanjing, China
Restricted access

Abstract

Irrigation, while being an important anthropogenic factor affecting the local to regional water cycle, is not typically represented in regional climate models. An irrigation scheme is incorporated into the Noah land surface scheme of the Weather Research and Forecasting (WRF) Model that has a calibrated convective parameterization and a tracer package is used to tag and track water vapor. To assess the impact of irrigation over the California Central Valley (CCV) on the regional climate of the U.S. Southwest, simulations are run (for three dry and three wet years) both with and without the irrigation scheme. Incorporation of the irrigation scheme resulted in simulated surface air temperature and humidity that were closer to observations, decreased depth of the planetary boundary layer over the CCV, and increased convective available potential energy. The result was an overall increase in precipitation over the Sierra Nevada range and the Colorado River basin during the summer. Water vapor rising from the irrigated region mainly moved northeastward and contributed to precipitation in Nevada and Idaho. Specifically, the results indicate increased precipitation on the windward side of the Sierra Nevada and over the Colorado River basin. The former is possibly linked to a sea-breeze-type circulation near the CCV, while the latter is likely associated with a wave pattern related to latent heat release over the moisture transport belt.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0158.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Francina Dominguez, francina@illinois.edu

Abstract

Irrigation, while being an important anthropogenic factor affecting the local to regional water cycle, is not typically represented in regional climate models. An irrigation scheme is incorporated into the Noah land surface scheme of the Weather Research and Forecasting (WRF) Model that has a calibrated convective parameterization and a tracer package is used to tag and track water vapor. To assess the impact of irrigation over the California Central Valley (CCV) on the regional climate of the U.S. Southwest, simulations are run (for three dry and three wet years) both with and without the irrigation scheme. Incorporation of the irrigation scheme resulted in simulated surface air temperature and humidity that were closer to observations, decreased depth of the planetary boundary layer over the CCV, and increased convective available potential energy. The result was an overall increase in precipitation over the Sierra Nevada range and the Colorado River basin during the summer. Water vapor rising from the irrigated region mainly moved northeastward and contributed to precipitation in Nevada and Idaho. Specifically, the results indicate increased precipitation on the windward side of the Sierra Nevada and over the Colorado River basin. The former is possibly linked to a sea-breeze-type circulation near the CCV, while the latter is likely associated with a wave pattern related to latent heat release over the moisture transport belt.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0158.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Francina Dominguez, francina@illinois.edu

Supplementary Materials

    • Supplemental Materials (DOCX 528.90 KB)
Save