• Angulo-Martínez, M., and A. P. Barros, 2015: Measurement uncertainty in KE–I relationships for soil erosion studies: An evaluation using PARSIVEL disdrometers in the southern Appalachian Mountains. Geomorphology, 228, 2840, doi:10.1016/j.geomorph.2014.07.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., G. Kim, E. Williams, and S. W. Nesbitt, 2004: Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Nat. Hazards Earth Syst. Sci., 4, 2951, doi:10.5194/nhess-4-29-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and Coauthors, 2014: NASA GPM-Ground Validation: Integrated Precipitation and Hydrology Experiment 2014 Science Plan. Tech. Rep., Duke University, 64 pp., doi:10.7924/G8CC0XMR.

    • Crossref
    • Export Citation
  • Bhushan, S., and A. P. Barros, 2007: A numerical study to investigate the relationship between moisture convergence patterns and orography in central Mexico. J. Hydrometeor., 8, 12641284, doi:10.1175/2007JHM791.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindlish, R., and A. P. Barros, 1996: Aggregation of digital terrain data using a modified fractal interpolation scheme. Comput. Geosci., 22, 907917, doi:10.1016/S0098-3004(96)00049-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, S. H. B., 2009: Birth of the mountains: The geologic story of the southern Appalachian Mountains. USGS Publ., 26 pp. [Available online at https://pubs.usgs.gov/gip/birth/.]

  • Cohen, A. E., S. M. Cavallo, M. C. Coniglio, and H. E. Brooks, 2015: A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments. Wea. Forecasting, 30, 591612, doi:10.1175/WAF-D-14-00105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., D. R. Conklin, and M. H. Unsworth, 2010: Local atmospheric decoupling in complex topography alters climate change impacts. Int. J. Climatol., 30, 18571864, doi:10.1002/joc.2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DellaSala, D. A., P. Alaback, T. Spribille, H. von Wehrden, and R. S. Nauman, 2011: Just what are temperate and boreal rainforests? Temperate and Boreal Rainforests of the World: Ecology and Conservation, D. A. DellaSala, Ed., Island Press, 1–41, doi:10.5822/978-1-61091-008-8_1.

    • Crossref
    • Export Citation
  • Dollison, R. M., 2010: The National Map: New viewer, services, and data download. USGS Fact Sheet 2010-3055, 2 pp. [Available online at https://pubs.er.usgs.gov/publication/fs20103055.]

    • Crossref
    • Export Citation
  • Duan, Y., A. Wilson, and A. P. Barros, 2015: Scoping a field experiment: Error diagnostics of TRMM Precipitation Radar estimates in complex terrain as a basis for IPHEX2014. Hydrol. Earth Syst. Sci., 19, 15011520, doi:10.5194/hess-19-1501-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dyer, J. M., 2009: Assessing topographic patterns in moisture use and stress using a water balance approach. Landsc. Ecol., 24, 391403, doi:10.1007/s10980-008-9316-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erlingis, J. M., and A. P. Barros, 2014: A study of the role of daytime land–atmosphere interactions on nocturnal convective activity in the southern Great Plains during CLASIC. J. Hydrometeor., 15, 19321953, doi:10.1175/JHM-D-14-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flerchinger, G. N., D. Marks, M. L. Reba, Q. Yu, and M. S. Seyfried, 2010: Surface fluxes and water balance of spatially varying vegetation within a small mountainous headwater catchment. Hydrol. Earth Syst. Sci., 14, 965978, doi:10.5194/hess-14-965-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galewsky, J., 2009: Rain shadow development during the growth of mountain ranges: An atmospheric dynamics perspective. J. Geophys. Res., 114, F01018, doi:10.1029/2008JF001085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Díez, M., J. Fernández, L. Fita, and C. Yagüe, 2013: Seasonal dependence of WRF Model biases and sensitivity to PBL schemes over Europe. Quart. J. Roy. Meteor. Soc., 139, 501514, doi:10.1002/qj.1976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giovannettone, J. P., and A. P. Barros, 2008: A remote sensing survey of the role of landform on the organization of orographic precipitation in central and southern Mexico. J. Hydrometeor., 9, 12671283, doi:10.1175/2008JHM947.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giovannettone, J. P., and A. P. Barros, 2009: Probing regional orographic controls of precipitation and cloudiness in the central Andes using satellite data. J. Hydrometeor., 10, 167182, doi:10.1175/2008JHM973.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J. Dudhia, 2012: Next-generation numerical weather prediction: Bridging parameterization, explicit clouds, and large eddies. Bull. Amer. Meteor. Soc., 93, ES6ES9, doi:10.1175/2011BAMS3224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF Model. J. Appl. Meteor. Climatol., 49, 18311844, doi:10.1175/2010JAMC2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., Y. Feng, P. F. Linden, M. D. Greenslade, and S. D. Mobbs, 1997: Low-Froude-number stable flows past mountains. Nuovo Cimento, 20, 261272.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

  • Jimenez, P. A., and J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF Model. J. Appl. Meteor. Climatol., 51, 300316, doi:10.1175/JAMC-D-11-084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jousse, A., A. Hall, F. Sun, and J. Teixeira, 2016: Causes of WRF surface energy fluxes biases in a stratocumulus region. Climate Dyn., 46, 571584, doi:10.1007/s00382-015-2599-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, doi:10.1175/JAS3534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, doi:10.1175/JAS3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., P. W. Mote, and J. D. Lundquist, 2010: Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. J. Geophys. Res., 115, D14122, doi:10.1029/2009JD013493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level 3 model: Its numerical stability and application to a regional prediction of advecting fog. Bound.-Layer Meteor., 119, 397407, doi:10.1007/s10546-005-9030-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCAR, 2012: Yellowstone: IBM iDataPlex System (NCAR Community Computing). NCAR Computational and Information Systems Lab, accessed 4 April 2017. [Available online at http://n2t.net/ark:/85065/d7wd3xhc.]

  • Nogueira, M., and A. P. Barros, 2014: The nonconvective/convective structural transition in stochastic scaling of atmospheric fields. J. Geophys. Res. Atmos., 119, 13 77113 794, doi:10.1002/2014JD022548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1978: Boundary Layer Climates. 2nd ed. Routledge, 435 pp.

  • Prat, O. P., and A. P. Barros, 2010: Ground observations to characterize the spatial gradients and vertical structure of orographic precipitation—Experiments in the inner region of the Great Smoky Mountains. J. Hydrol., 391, 141156, doi:10.1016/j.jhydrol.2010.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinhardt, K., and W. K. Smith, 2008: Impacts of cloud immersion on microclimate, photosynthesis and water relations of Abies fraseri (Pursh.) Poiret in a temperate mountain cloud forest. Oecologia, 158, 229238, doi:10.1007/s00442-008-1128-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shanks, R. E., 1954: Climates of the Great Smoky Mountains. Ecology, 35, 354361, doi:10.2307/1930098.

  • Shin, H. H., and J. Dudhia, 2016: Evaluation of PBL parameterizations in WRF at subkilometer grid spacings: Turbulence statistics in the dry convective boundary layer. Mon. Wea. Rev., 144, 11611177, doi:10.1175/MWR-D-15-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrestha, P., A. P. Barros, and A. Khlystov, 2010: Chemical composition and aerosol size distribution of the middle mountain range in the Nepal Himalayas during the 2009 pre-monsoon season. Atmos. Chem. Phys., 10, 11 60511 621, doi:10.5194/acp-10-11605-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230, doi:10.1016/S0065-2687(08)60262-9.

    • Crossref
    • Export Citation
  • Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 11541164, doi:10.1175/1520-0469(1989)046<1154:LFNFPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and R. Rotunno, 1990: Low Froude number flow past three-dimensional obstacles. Part II: Upwind flow reversal zone. J. Atmos. Sci., 47, 14981511, doi:10.1175/1520-0469(1990)047<1498:LFNFPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X., and A. P. Barros, 2012: The impact of forcing datasets on the high-resolution simulation of Tropical Storm Ivan (2004) in the southern Appalachians. Mon. Wea. Rev., 140, 33003326, doi:10.1175/MWR-D-11-00345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X., and A. P. Barros, 2014: High resolution simulation of Tropical Storm Ivan (2004) in the southern Appalachians: Role of planetary boundary layer schemes and cumulus parameterization. Quart. J. Roy. Meteor. Soc., 140, 18471865, doi:10.1002/qj.2255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X., and A. P. Barros, 2015a: Isolating the role of surface evapotranspiration on moist convection along the eastern flanks of the tropical Andes using a quasi-idealized approach. J. Atmos. Sci., 72, 243261, doi:10.1175/JAS-D-14-0048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X., and A. P. Barros, 2015b: Impact of Amazonian evapotranspiration on moisture transport and convection along the eastern flanks of the tropical Andes. Quart. J. Roy. Meteor. Soc., 141, 33253343, doi:10.1002/qj.2615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, J., and A. P. Barros, 2013: Prospects for flash flood forecasting in mountainous regions—An investigation of Tropical Storm Fay in the southern Appalachians. J. Hydrol., 506, 6989, doi:10.1016/j.jhydrol.2013.02.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, J., and A. P. Barros, 2014: Coupled prediction of flood response and debris flow initiation during warm- and cold-season events in the southern Appalachians, USA. Hydrol. Earth Syst. Sci., 18, 367388, doi:10.5194/hess-18-367-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, J., and A. P. Barros, 2017: Multi-year atmospheric forcing datasets for hydrologic modeling in regions of complex terrain—Methodology and evaluation over the Integrated Precipitation and Hydrology Experiment 2014 domain. J. Hydrol., doi:10.1016/j.jhydrol.2016.12.058, in press.

    • Search Google Scholar
    • Export Citation
  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geogr. Rev., 38, 5594, doi:10.2307/210739.

  • Tokay, A., W. Petersen, P. Gatlin, and M. Wingo, 2013: Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Oceanic Technol., 30, 16721690, doi:10.1175/JTECH-D-12-00163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., D. B. Wolff, and W. A. Petersen, 2014: Evaluation of the new version of the laser-optical disdrometer, OTT PARSIVEL2. J. Atmos. Oceanic Technol., 31, 12761288, doi:10.1175/JTECH-D-13-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K., 1991: Climate diagnostics from global analyses: Conservation of mass in ECMWF analyses. J. Climate, 4, 707722, doi:10.1175/1520-0442(1991)004<0707:CDFGAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, J. S., A. Gohm, and M. W. Rotach, 2015: The impact of valley geometry on daytime thermally driven flows and vertical transport processes. Quart. J. Roy. Meteor. Soc., 141, 17801794, doi:10.1002/qj.2481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1983: The climatological mean stationary waves: Observational evidence. Large-Scale Dynamical Processes in the Atmosphere, B. Hoskins and R. Pearce, Eds., Academic Press, 27–53.

  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

    • Crossref
    • Export Citation
  • Wilson, A. M., and A. P. Barros, 2014: An investigation of warm rainfall microphysics in the southern Appalachians: Orographic enhancement via low-level seeder−feeder interactions. J. Atmos. Sci., 71, 17831805, doi:10.1175/JAS-D-13-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, A. M., and A. P. Barros, 2015: Landform controls on low level moisture convergence and the diurnal cycle of warm season orographic rainfall in the southern Appalachians. J. Hydrol., 531, 475493, doi:10.1016/j.jhydrol.2015.10.068.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 312 150 4
PDF Downloads 239 115 6

Orographic Land–Atmosphere Interactions and the Diurnal Cycle of Low-Level Clouds and Fog

View More View Less
  • 1 Civil and Environmental Engineering Department, Pratt School of Engineering, Duke University, Durham, North Carolina
Restricted access

Abstract

Previous work illuminated landform controls on moisture convergence in the southern Appalachian Mountains (SAM) promoting heterogeneity in the vertical structure of low-level clouds (LLC) and seeder–feeder interactions (SFI) that significantly impact warm season precipitation. Here, the focus is on elucidating orographic land–atmosphere interactions associated with the observed diurnal cycle of LLC and fog in the region. Three distinct hydrometeorological regimes during the Integrated Precipitation and Hydrology Experiment (IPHEx) are examined using the Weather Research and Forecasting Model. Sensitivity to the choice of planetary boundary layer parameterization was investigated in the light of IPHEx observations. Simulations using the Mellor–Yamada–Nakanishi–Niino scheme exhibit LLC and fog patterns most consistent with observations, albeit without capturing SFI. Independently of synoptic regime, the simulations reveal two distinct modes of orographic controls on atmospheric moisture convergence patterns that explain the diurnal cycle of LLC and fog. First, a stationary nocturnal mode at the meso-α scale associated with an extended flow separation zone supports low-level pooling and trapping of cold, moist, stable air in the inner mountain on the lee side of the western topographic divide. Second, a dynamic daytime mode that results from the coorganization of ridge–valley circulations at the meso-γ scale and Rayleigh–Bénard convection at the meso-β scale is associated with widespread low-level instability below the envelope orography. Orographic decoupling results in the formation of a shallow stagnation zone between the western and eastern topographic divides at night that contracts westward during daytime. Predominantly easterly and southeasterly low-level moisture convergence patterns support early afternoon LLC formation in the inner SAM.

Current affiliation: Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Ana P. Barros, barros@duke.edu

Abstract

Previous work illuminated landform controls on moisture convergence in the southern Appalachian Mountains (SAM) promoting heterogeneity in the vertical structure of low-level clouds (LLC) and seeder–feeder interactions (SFI) that significantly impact warm season precipitation. Here, the focus is on elucidating orographic land–atmosphere interactions associated with the observed diurnal cycle of LLC and fog in the region. Three distinct hydrometeorological regimes during the Integrated Precipitation and Hydrology Experiment (IPHEx) are examined using the Weather Research and Forecasting Model. Sensitivity to the choice of planetary boundary layer parameterization was investigated in the light of IPHEx observations. Simulations using the Mellor–Yamada–Nakanishi–Niino scheme exhibit LLC and fog patterns most consistent with observations, albeit without capturing SFI. Independently of synoptic regime, the simulations reveal two distinct modes of orographic controls on atmospheric moisture convergence patterns that explain the diurnal cycle of LLC and fog. First, a stationary nocturnal mode at the meso-α scale associated with an extended flow separation zone supports low-level pooling and trapping of cold, moist, stable air in the inner mountain on the lee side of the western topographic divide. Second, a dynamic daytime mode that results from the coorganization of ridge–valley circulations at the meso-γ scale and Rayleigh–Bénard convection at the meso-β scale is associated with widespread low-level instability below the envelope orography. Orographic decoupling results in the formation of a shallow stagnation zone between the western and eastern topographic divides at night that contracts westward during daytime. Predominantly easterly and southeasterly low-level moisture convergence patterns support early afternoon LLC formation in the inner SAM.

Current affiliation: Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Ana P. Barros, barros@duke.edu
Save