• Aguado, E., 1985: Radiation balances of melting snow covers at an open site in the central Sierra Nevada, California. Water Resour. Res., 21, 16491654, doi:10.1029/WR021i011p01649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bales, R. C., N. P. Molotch, T. H. Painter, M. D. Dettinger, R. Rice, and J. Dozier, 2006: Mountain hydrology of the western United States. Water Resour. Res., 42, W08432, doi:10.1029/2005WR004387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cano, D., J. M. Monget, M. Albuisson, H. Guillard, N. Regas, and L. Wald, 1986: A method for the determination of the global solar radiation from meteorological satellite data. Sol. Energy, 37, 3139, doi:10.1016/0038-092X(86)90104-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., K. T. Redmond, and L. G. Riddle, 1999: ENSO and hydrologic extremes in the western United States. J. Climate, 12, 28812893, doi:10.1175/1520-0442(1999)012<2881:EAHEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clemesha, R. E. S., A. Gershunov, S. F. Iacobellis, A. P. Williams, and D. R. Cayan, 2016: The northward march of summer low cloudiness along the California coast. Geophys. Res. Lett., 43, 12871295, doi:10.1002/2015GL067081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cline, D. W., 1997: Snow surface energy exchanges and snowmelt at a continental, midlatitude Alpine site. Water Resour. Res., 33, 689701, doi:10.1029/97WR00026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., T. R. Karl, B. Sun, and K. E. Trenberth, 2006: Recent trends in cloudiness over the United States: A tale of monitoring inadequacies. Bull. Amer. Meteor. Soc., 87, 597606, doi:10.1175/BAMS-87-5-597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davenport, E. C., and N. A. El-Sanhurry, 1991: Phi/Phimax: Review and synthesis. Educ. Psychol. Meas., 51, 821828, doi:10.1177/001316449105100403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249266, doi:10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2011: Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes. J. Amer. Water Resour. Assoc., 47, 514523, doi:10.1111/j.1752-1688.2011.00546.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., D. R. Cayan, H. F. Diaz, and D. M. Meko, 1998: North–south precipitation patterns in western North America on interannual-to-decadal time scales. J. Climate, 11, 30953111, doi:10.1175/1520-0442(1998)011<3095:NSPPIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Done, J., C. A. Davis, and M. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) model. Atmos. Sci. Lett., 5, 110117, doi:10.1002/asl.72.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastman, R., and S. G. Warren, 2013: A 39-yr survey of cloud changes from land stations worldwide 1971–2009: Long-term trends, relation to aerosols, and expansion of the tropical belt. J. Climate, 26, 12861303, doi:10.1175/JCLI-D-12-00280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., K. Fraedrich, and F. Lunkeit, 2001: Teleconnections and low-frequency variability in idealized experiments with two storm tracks. Quart. J. Roy. Meteor. Soc., 127, 13211339, doi:10.1002/qj.49712757411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gautier, C., G. Diak, and S. Masse, 1980: A simple physical model to estimate incident solar radiation at the surface from GOES satellite data. J. Appl. Meteor., 19, 10051012, doi:10.1175/1520-0450(1980)019<1005:ASPMTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno García, S., T. Trautmann, and V. Venema, 2012: Reduction of radiation biases by incorporating the missing cloud variability via downscaling techniques: A study using the 3-D MoCaRT model. Atmos. Meas. Tech., 5, 22612276, doi:10.5194/amt-5-2261-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grubišić, V., and B. J. Billings, 2008: Climatology of the Sierra Nevada mountain-wave events. Mon. Wea. Rev., 136, 757768, doi:10.1175/2007MWR1902.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannachi, A., 2004: A Primer for EOF Analysis of Climate Data. University of Reading, 33 pp.

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

  • Hinkelman, L. M., K. E. Lapo, N. C. Cristea, and J. D. Lundquist, 2015: Using CERES SYN surface irradiance data as forcing for snowmelt simulation in complex terrain. J. Hydrometeor., 16, 21332152, doi:10.1175/JHM-D-14-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J., 2012: An Introduction to Dynamic Meteorology. 5th ed., Academic Press, 552 pp.

  • Howell, D. C., 2011: Chi-square test: Analysis of contingency tables. International Encyclopedia of Statistical Science, Springer, 250–252.

    • Crossref
    • Export Citation
  • Iacobellis, S. F., and D. R. Cayan, 2013: The variability of California summertime marine stratus: Impacts on surface air temperatures. J. Geophys. Res. Atmos., 118, 91059122, doi:10.1002/jgrd.50652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ineichen, P., and R. Perez, 1999: Derivation of cloud index from geostationary satellites and application to the production of solar irradiance and daylight illuminance data. Theor. Appl. Climatol., 64, 119130, doi:10.1007/s007040050116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaiser, H. F., 1958: The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187200, doi:10.1007/BF02289233.

  • Kelly, D. L., J. T. Schaefer, and C. A. Doswell III, 1985: Climatology of nontornadic severe thunderstorm events in the United States. Mon. Wea. Rev., 113, 19972014, doi:10.1175/1520-0493(1985)113<1997:CONSTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khan, S. I., and Coauthors, 2011: Satellite remote sensing and hydrologic modeling for flood inundation mapping in Lake Victoria basin: Implications for hydrologic prediction in ungauged basins. IEEE Trans. Geosci. Remote Sens., 49, 8595, doi:10.1109/TGRS.2010.2057513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleissl, J., 2013: Solar Energy Forecasting and Resource Assessment. Academic Press, 462 pp.

  • Lapo, K. E., L. M. Hinkelman, M. S. Raleigh, and J. D. Lundquist, 2015: Impact of errors in the downwelling irradiances on simulations of snow water equivalent, snow surface temperature, and the snow energy balance. Water Resour. Res., 51, 16491670, doi:10.1002/2014WR016259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leathers, D. J., B. Yarnal, and M. A. Palecki, 1991: The Pacific/North American teleconnection pattern and United States climate. Part I: Regional temperature and precipitation associations. J. Climate, 4, 517528, doi:10.1175/1520-0442(1991)004<0517:TPATPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leavesley, G. H., R. W. Lichty, B. M. Troutman, and L. G. Saindon, 1983: Precipitation–runoff modeling system: User’s manual. Water-Resources Investigations Rep. 83-4238, 206 pp. [Available online at http://pubs.usgs.gov/wri/1983/4238/report.pdf.]

  • Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. Statistical Forecasting Project Scientific Rep. 1, MIT Department of Meteorology, 49 pp.

  • Marks, D., and J. Dozier, 1992: Climate and energy exchange at the snow surface in the alpine region of the Sierra Nevada: 2. Snow cover energy balance. Water Resour. Res., 28, 30433054, doi:10.1029/92WR01483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markstrom, S. L., R. S. Regan, L. E. Hay, R. J. Viger, R. M. T. Webb, R. A. Payn, and J. H. LaFontaine, 2015: PRMS-IV, the precipitation–runoff modeling system, version 4. USGS Techniques and Methods Rep. 6–B7, 158 pp., doi:10.3133/tm6B7.

    • Crossref
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

  • Mizukami, N., M. P. Clark, A. G. Slater, L. D. Brekke, M. M. Elsner, J. R. Arnold, and S. Gangopadhyay, 2014: Hydrologic implications of different large-scale meteorological model forcing datasets in mountainous regions. J. Hydrometeor., 15, 474488, doi:10.1175/JHM-D-13-036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molotch, N. P., T. H. Painter, R. C. Bales, and J. Dozier, 2004: Incorporating remotely sensed snow albedo into spatially distributed snowmelt modeling. Geophys. Res. Lett., 31, L03501, doi:10.1029/2003GL019063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., J. C. Fyfe, M. H. Ambaum, D. B. Stephenson, and G. R. North, 2009: Empirical orthogonal functions: The medium is the message. J. Climate, 22, 65016514, doi:10.1175/2009JCLI3062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., 2006: Climate-driven variability and trends in mountain snowpack in western North America. J. Climate, 19, 62096220, doi:10.1175/JCLI3971.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J. R., R. J. Allen, A. T. Evan, M. D. Zelinka, C. W. O’Dell, and S. A. Klein, 2016: Evidence for climate change in the satellite cloud record. Nature, 536, 7275, doi:10.1038/nature18273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 38153832, doi:10.1175/2007JCLI2065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paech, S. J., J. R. Mecikalski, D. M. Sumner, C. S. Pathak, Q. Wu, S. Islam, and T. Sangoyomi, 2009: A calibrated, high-resolution GOES satellite solar insolation product for a climatology of Florida evapotranspiration. J. Amer. Water Resour. Assoc., 45, 13281342, doi:10.1111/j.1752-1688.2009.00366.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulescu, M., E. Paulescu, P. Gravila, and V. Badescu, 2012: Weather Modeling and Forecasting of PV Systems Operation. Springer, 358 pp.

    • Crossref
    • Export Citation
  • Pearson, K., 1895: Notes on regression and inheritance in the case of two parents. Proc. Roy. Soc. London, 58, 240242, doi:10.1098/rspl.1895.0041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, K., 1904: On the theory of contingency and its relation to association and normal correlation. Drapers’ Company Research Memoirs: Biometric Series I, Dulau and Co., 46 pp.

  • Perez, R., P. Ineichen, K. Moore, M. Kmiecik, C. Chain, R. George, and F. Vignola, 2002: A new operational model for satellite-derived irradiances: Description and validation. Sol. Energy, 73, 307317, doi:10.1016/S0038-092X(02)00122-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perez, R., S. Kivalov, A. Zelenka, J. Schlemmer, and K. Hemker Jr., 2010: Improving the performance of satellite-to-irradiance models using the satellite’s infrared sensors. Proc. of ASES Annual Conf., Phoenix, AZ, American Solar Energy Society, 8 pp. [Available online at http://www.asrc.cestm.albany.edu/perez/2010/ir.pdf.]

  • Pierce, D. W., and Coauthors, 2008: Attribution of declining western U.S. snowpack to human effects. J. Climate, 21, 64256444, doi:10.1175/2008JCLI2405.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and D. R. Cayan, 2013: The uneven response of different snow measures to human-induced climate warming. J. Climate, 26, 41484167, doi:10.1175/JCLI-D-12-00534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raleigh, M. S., K. Rittger, and J. D. Lundquist, 2011: What lies beneath? Comparing MODIS fractional snow covered area against ground-based observations under forest canopies and in the meadows of the Sierra Nevada. Proc. 79th Western Snow Conf., Stateline, NV, Western Snow Conference, 3–14. [Available online at https://westernsnowconference.org/node/7.]

  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. L. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243, 5763, doi:10.1126/science.243.4887.57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., 1992: Microphysical structure and evolution of a central Sierra Nevada orographic cloud system. J. Appl. Meteor., 31, 324, doi:10.1175/1520-0450(1992)031<0003:MSAEOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. J. Climate, 6, 293335, doi:10.1002/joc.3370060305.

  • Ringer, M. A., and K. P. Shine, 1997: Sensitivity of the Earth’s radiation budget to interannual variations in cloud amount. Climate Dyn., 13, 213222, doi:10.1007/s003820050161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rittger, K., A. Kahl, and J. Dozier, 2011: Topographic distribution of snow water equivalent in the Sierra Nevada. Proc. 79th Western Snow Conf., Stateline, NV, Western Snow Conference, 37–46. [Available online at https://westernsnowconference.org/node/781.]

  • Rittger, K., T. H. Painter, and J. Dozier, 2013: Assessment of methods for mapping snow cover from MODIS. Adv. Water Resour., 51, 367380, doi:10.1016/j.advwatres.2012.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., C. Delo, and B. Cairns, 2002: Implications of the observed mesoscale variations of clouds for the Earth’s radiation budget. J. Climate, 15, 557585, doi:10.1175/1520-0442(2002)015<0557:IOTOMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. P. Clark, R. L. Armstrong, D. A. McGinnis, and R. S. Pulwarty, 1999: Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data. Water Resour. Res., 35, 21452160, doi:10.1029/1999WR900090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seze, G., and W. B. Rossow, 1991: Time-cumulated visible and infrared radiance histograms used as descriptors of surface and cloud variations. Int. J. Remote Sens., 12, 877920, doi:10.1080/01431169108929702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J. J., M. D. Dettinger, F. Gehrke, T. J. McIntire, and G. L. Hufford, 2004: Hydrologic scales, cloud variability, remote sensing, and models: Implications for forecasting snowmelt and streamflow. Wea. Forecasting, 19, 251276, doi:10.1175/1520-0434(2004)019<0251:HSCVRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, G. L., D. Rutan, and T. D. Bess, 1992: Atlas of albedo and absorbed solar radiation derived from Nimbus 7 Earth Radiation Budget data set—November 1978 to October 1985. NASA Reference Publ. 1231, 64 pp. [Available online at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930001980.pdf.]

  • Smith, K., C. Strong, and S. Y. Wang, 2015: Connectivity between historical Great Basin precipitation and Pacific Ocean variability: A CMIP5 model evaluation. J. Climate, 28, 60966112, doi:10.1175/JCLI-D-14-00488.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 8589, doi:10.1126/science.1058958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. Army Corps of Engineers, 1956: Snow hydrology: Summary report of the snow investigations. North Pacific Division, USACE, 437 pp.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, S. G., R. M. Eastman, and C. J. Hahn, 2007: A survey of changes in cloud cover and cloud types over land from surface observations, 1971–96. J. Climate, 20, 717738, doi:10.1175/JCLI4031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welch, R. M., K. S. Kuo, B. A. Wielicki, S. K. Sengupta, and L. Parker, 1988: Marine stratocumulus cloud fields off the coast of Southern California observed using Landsat imagery. Part I: Structural characteristics. J. Appl. Meteor., 27, 363378, doi:10.1175/1520-0450(1988)027<0363:MSCFOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 376 pp.

    • Crossref
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelenka, A., R. Perez, R. Seals, and D. Renne, 1999: Effective accuracy of satellite-derived hourly irradiances. Theor. Appl. Climatol., 62, 199207, doi:10.1007/s007040050084.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 236 183 7
PDF Downloads 128 88 0

Variability of Cloudiness over Mountain Terrain in the Western United States

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
Restricted access

Abstract

This study investigates the spatial and temporal variability of cloudiness across mountain zones in the western United States. Daily average cloud albedo is derived from a 19-yr series (1996–2014) of half-hourly Geostationary Operational Environmental Satellite (GOES) images. During springtime when incident radiation is active in driving snowmelt–runoff processes, the magnitude of daily cloud variations can exceed 50% of long-term averages. Even when aggregated over 3-month periods, cloud albedo varies by ±10% of long-term averages in many locations. Rotated empirical orthogonal functions (REOFs) of daily cloud albedo anomalies over high-elevation regions of the western conterminous United States identify distinct regional patterns, wherein the first five REOFs account for ~67% of the total variance. REOF1 is centered over Northern California and Oregon and is pronounced between November and March. REOF2 is centered over the interior northwest and is accentuated between March and July. Each of the REOF/rotated principal components (RPC) modes associates with anomalous large-scale atmospheric circulation patterns and one or more large-scale teleconnection indices (Arctic Oscillation, Niño-3.4, and Pacific–North American), which helps to explain why anomalous cloudiness patterns take on regional spatial scales and contain substantial variability over seasonal time scales.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Edwin Sumargo, esumargo@ucsd.edu

Abstract

This study investigates the spatial and temporal variability of cloudiness across mountain zones in the western United States. Daily average cloud albedo is derived from a 19-yr series (1996–2014) of half-hourly Geostationary Operational Environmental Satellite (GOES) images. During springtime when incident radiation is active in driving snowmelt–runoff processes, the magnitude of daily cloud variations can exceed 50% of long-term averages. Even when aggregated over 3-month periods, cloud albedo varies by ±10% of long-term averages in many locations. Rotated empirical orthogonal functions (REOFs) of daily cloud albedo anomalies over high-elevation regions of the western conterminous United States identify distinct regional patterns, wherein the first five REOFs account for ~67% of the total variance. REOF1 is centered over Northern California and Oregon and is pronounced between November and March. REOF2 is centered over the interior northwest and is accentuated between March and July. Each of the REOF/rotated principal components (RPC) modes associates with anomalous large-scale atmospheric circulation patterns and one or more large-scale teleconnection indices (Arctic Oscillation, Niño-3.4, and Pacific–North American), which helps to explain why anomalous cloudiness patterns take on regional spatial scales and contain substantial variability over seasonal time scales.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Edwin Sumargo, esumargo@ucsd.edu
Save