• Askelson, M. A., J.-P. Aubagnac, and J. M. Straka, 2000: An adaptation of the Barnes filter applied to the objective analysis of radar data. Mon. Wea. Rev., 128, 30503082, doi:10.1175/1520-0493(2000)128<3050:AAOTBF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D Operational Support Facility. Bull. Amer. Meteor. Soc., 74, 16691687, doi:10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838851, doi:10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farr, T. G., and Coauthors, 2007: The Shuttle Radar Topography Mission. Rev. Geophys., 45, RG2004, doi:10.1029/2005RG000183.

  • Fulton, R., 1998: WSR-88D polar-to-HRAP mapping. NOAA Tech. Memo., 33 pp. [Available online at www.nws.noaa.gov/oh/hrl/papers/wsr88d/hrapmap.pdf.]

  • Howard, K. W., J. J. Gourley, and R. A. Maddox, 1997: Uncertainties in WSR-88D measurements and their impacts on monitoring life cycles. Wea. Forecasting, 12, 166174, doi:10.1175/1520-0434(1997)012<0166:UIWMAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., P. H. Hildebrand, and C. L. Frush, 1983: Feasibility test of an airborne pulse-Doppler meteorological radar. J. Appl. Meteor., 22, 744757, doi:10.1175/1520-0450(1983)022<0744:FTOAAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klazura, G. E., and D. A. Imy, 1993: A description of the initial set of analysis products available from the NEXRAD WSR-88D system. Bull. Amer. Meteor. Soc., 74, 12931311, doi:10.1175/1520-0477(1993)074<1293:ADOTIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langston, C., J. Zhang, and K. Howard, 2007: Four-dimensional dynamic radar mosaic. J. Atmos. Oceanic Technol., 24, 776790, doi:10.1175/JTECH2001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., J. Zhang, J. J. Gourley, and K. W. Howard, 2002: Weather radar coverage over the contiguous United States. Wea. Forecasting, 17, 927934, doi:10.1175/1520-0434(2002)017<0927:WRCOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, L. J., C. G. Mohr, and A. J. Weinheimer, 1986: The simple rectification to Cartesian space of folded radial velocities from Doppler radar sampling. J. Atmos. Oceanic Technol., 3, 162174, doi:10.1175/1520-0426(1986)003<0162:TSRTCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, C. G., and R. L. Vaughn, 1979: An economical procedure for Cartesian interpolation and display of reflectivity factor data in three-dimensional space. J. Appl. Meteor., 18, 661670, doi:10.1175/1520-0450(1979)018<0661:AEPFCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qi, Y., and J. Zhang, 2013: Correction of radar QPE errors associated with partial bright band observations near the ground. J. Hydrometeor., 14, 19331943, doi:10.1175/JHM-D-13-040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qi, Y., J. Zhang, Q. Cao, Y. Hong, and X. Hu, 2013a: Correction of radar QPE errors for nonuniform VPRs in mesoscale convective systems using TRMM observations. J. Hydrometeor., 14, 16721682, doi:10.1175/JHM-D-12-0165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qi, Y., J. Zhang, P. Zhang, and Q. Cao, 2013b: VPR correction of bright band effects in radar QPEs using polarimetric radar observations. J. Geophys. Res. Atmos., 118, 36273633, doi:10.1002/jgrd.50364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serafin, R. J., and J. W. Wilson, 2000: Operational weather radar in the United States: Progress and opportunity. Bull. Amer. Meteor. Soc., 81, 501518, doi:10.1175/1520-0477(2000)081<0501:OWRITU>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., P. Robinson, J. Wurman, and J. Gao, 2003: Single-Doppler velocity retrieval with rapid-scan radar data. J. Atmos. Oceanic Technol., 20, 17581775, doi:10.1175/1520-0426(2003)020<1758:SVRWRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. P., 1987: Map projections: A working manual. USGS Professional Paper 1395, 383 pp. [Available online at https://pubs.usgs.gov/pp/1395/report.pdf.]

    • Crossref
    • Export Citation
  • Snyder, J. P., 1993: Flattening the Earth: Two Thousand Years of Map Projections. University of Chicago Press, 384 pp.

  • Tabary, P., 2007: The new French operational radar rainfall product. Part I: Methodology. Wea. Forecasting, 22, 393408, doi:10.1175/WAF1004.1.

  • Tang, L., J. Zhang, Y. Qi, C. Langston, and K. Howard, 2013: Non-standard blockage mitigation for national radar QPE products. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 354. [Available online at https://ams.confex.com/ams/36Radar/webprogram/Paper228659.html.]

  • Tang, L., J. Zhang, C. Langston, J. Krause, K. Howard, and V. Lakshmanan, 2014: A physically based precipitation–nonprecipitation radar echo classifier using polarimetric and environmental data in a real-time national system. Wea. Forecasting, 29, 11061119, doi:10.1175/WAF-D-13-00072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, Z., K. Zhang, and X. Xue, 2015: Water balance–based actual evapotranspiration reconstruction from ground and satellite observations over the conterminous United States. Water Resour. Res., 51, 64856499, doi:10.1002/2015WR017311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weygandt, S. S., A. Shapiro, and K. K. Droegemeier, 2002: Retrieval of model initial fields from single-Doppler observations of a supercell thunderstorm. Part I: Single-Doppler velocity retrieval. Mon. Wea. Rev., 130, 433453, doi:10.1175/1520-0493(2002)130<0433:ROMIFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, C., Z. Li, and Z. Yu, 2012: A priori parameter estimates for a distributed, grid-based Xinanjiang model using geographically based information. J. Hydrol., 468–469, 4762, doi:10.1016/j.jhydrol.2012.08.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, C., K. Zhang, and Z. Yu, 2014: Improving the flood prediction capability of the Xinanjiang model in ungauged nested catchments by coupling it with the geomorphologic instantaneous unit hydrograph. J. Hydrol., 517, 10351048, doi:10.1016/j.jhydrol.2014.06.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Y. Qi, 2010: A real-time algorithm for the correction of brightband effects in radar-derived QPE. J. Hydrometeor., 11, 11571171, doi:10.1175/2010JHM1201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., K. Howard, and J. J. Gourley, 2005: Constructing three-dimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes. J. Atmos. Oceanic Technol., 22, 3042, doi:10.1175/JTECH-1689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) System: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., Y. Qi, D. Kingsmill, and K. Howard, 2012a: Radar-based quantitative precipitation estimation for the cool season in complex terrain: Case studies from the NOAA Hydrometeorology Testbed. J. Hydrometeor., 13, 18361854, doi:10.1175/JHM-D-11-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., Y. Qi, K. Howard, C. Langston, and B. Kaney, 2012b: Radar Quality Index (RQI)–A combined measure of beam blockage and VPR effects in a national network. IAHS Publ., 351, 388393.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, doi:10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, K., J. S. Kimball, K. C. McDonald, J. J. Cassano, and S. W. Running, 2007: Impacts of large-scale oscillations on pan-Arctic terrestrial net primary production. Geophys. Res. Lett., 34, L21403, doi:10.1029/2007GL031605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, K., J. S. Kimball, Y. Kim, and K. C. McDonald, 2011: Changing freeze–thaw seasons in northern high latitudes and associated influences on evapotranspiration. Hydrol. Processes, 25, 41424151, doi:10.1002/hyp.8350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., and H. Gao, 2016: A novel algorithm for monitoring reservoirs under all-weather conditions at a high temporal resolution through passive microwave remote sensing. Geophys. Res. Lett., 43, 80528059, doi:10.1002/2016GL069560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., H. Gao, and B. Naz, 2014: Monitoring reservoir storage in South Asia from multisatellite remote sensing. Water Resour. Res., 50, 89278943, doi:10.1002/2014WR015829.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 230 141 17
PDF Downloads 222 147 13

A Physically Based Two-Dimensional Seamless Reflectivity Mosaic for Radar QPE in the MRMS System

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 2 NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
Restricted access

Abstract

The U.S. Weather Surveillance Radar-1988 Doppler (WSR-88D) network has provided meteorologists and hydrologists with quantitative precipitation observations at an unprecedented high spatial–temporal resolution since its deployment in the mid-1990s. Since each single radar can only cover a maximum range of 460 km, a mosaic of multiple-radar observations is needed to generate any national-scale products. The Multi-Radar Multi-Sensor (MRMS) system utilizes a physically based two-dimensional mosaicking algorithm of the WSR-88D data to generate seamless national quantitative precipitation estimation (QPE) products. For areas covered by multiple radars, the mosaicking scheme first determines if precipitation is present by checking the lowest-altitude observation. If the lowest observed radar data indicate no precipitation, then the mosaicked value is set to no precipitation. Otherwise, a weighted mean of multiple-radar observations is taken as the mosaicked value. The weighting function is based on multiple factors, including the distance from the radar and the height of the observation with respect to the melting layer. The mosaic algorithm uses the physically lowest radar observations with no/little blockage while maintaining a spatial continuity in the mosaicked field. The performance of the MRMS seamless radar mosaic algorithm was examined for various precipitation events of different characteristics. The results of these case evaluations are presented in this paper.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Youcun Qi, youcun.qi@noaa.gov

Abstract

The U.S. Weather Surveillance Radar-1988 Doppler (WSR-88D) network has provided meteorologists and hydrologists with quantitative precipitation observations at an unprecedented high spatial–temporal resolution since its deployment in the mid-1990s. Since each single radar can only cover a maximum range of 460 km, a mosaic of multiple-radar observations is needed to generate any national-scale products. The Multi-Radar Multi-Sensor (MRMS) system utilizes a physically based two-dimensional mosaicking algorithm of the WSR-88D data to generate seamless national quantitative precipitation estimation (QPE) products. For areas covered by multiple radars, the mosaicking scheme first determines if precipitation is present by checking the lowest-altitude observation. If the lowest observed radar data indicate no precipitation, then the mosaicked value is set to no precipitation. Otherwise, a weighted mean of multiple-radar observations is taken as the mosaicked value. The weighting function is based on multiple factors, including the distance from the radar and the height of the observation with respect to the melting layer. The mosaic algorithm uses the physically lowest radar observations with no/little blockage while maintaining a spatial continuity in the mosaicked field. The performance of the MRMS seamless radar mosaic algorithm was examined for various precipitation events of different characteristics. The results of these case evaluations are presented in this paper.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Youcun Qi, youcun.qi@noaa.gov
Save