• Adirosi, E., E. Gorgucci, L. Baldini, and A. Tokay, 2014: Evaluation of gamma raindrop size distribution assumption through comparison of rain rates of measured and radar-equivalent gamma DSD. J. Appl. Meteor. Climatol., 53, 16181635, doi:10.1175/JAMC-D-13-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aliseda, A., A. Cartellier, F. Hainaux, and J. C. Lasheras, 2002: Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech., 468, 77105, doi:10.1017/S0022112002001593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., O. P. Prat, and F. Y. Testik, 2010: Size distribution of raindrops. Nat. Phys., 6, 232, doi:10.1038/nphys1646.

  • Beard, K. V., and A. R. Jameson, 1983: Raindrop canting. J. Atmos. Sci., 40, 448454, doi:10.1175/1520-0469(1983)040<0448:RC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., H. T. Ochs, and S. Liu, 2001: Collisions between small precipitation drops. Part III: Laboratory measurements at reduced pressure. J. Atmos. Sci., 58, 13951408, doi:10.1175/1520-0469(2001)058<1395:CBSPDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004: Drop size distribution retrieval with polarimetric radar: Model and application. J. Appl. Meteor., 43, 461475, doi:10.1175/1520-0450(2004)043<0461:DSDRWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Bringi, V. N., C. R. Williams, M. Thurai, and P. T. May, 2009: Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. J. Atmos. Oceanic Technol., 26, 21072122, doi:10.1175/2009JTECHA1258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., and V. N. Bringi, 1987: Simulation of radar reflectivity and surface measurements of rainfall. J. Atmos. Oceanic Technol., 4, 464478, doi:10.1175/1520-0426(1987)004<0464:SORRAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collier, C. G., 1999: The impact of wind drift on the utility of very high spatial resolution radar data over urban areas. Phys. Chem. Earth, 24B, 889893, doi:10.1016/S1464-1909(99)00099-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Counihan, J., 1975: Adiabatic atmospheric boundary layers: A review and analysis of data from the period 1880–1972. Atmos. Environ., 9, 871905, doi:10.1016/0004-6981(75)90088-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czys, R. R., and K. C. Tang, 1995: An exact analytical solution for raindrop collision rate. J. Atmos. Sci., 52, 32893292, doi:10.1175/1520-0469(1995)052<3289:AEASFR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, S., A. K. Shukla, and A. Maitra, 2010: Investigation of vertical profile of rain microstructure at Ahmedabad in Indian tropical region. Adv. Space Res., 45, 12351243, doi:10.1016/j.asr.2010.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davenport, A. G., 1960: Rationale for determining design wind velocities. J. Struct. Div., 86, 3968.

  • Erpul, G., L. D. Norton, and D. Gabriels, 2002: The effect of wind on raindrop impact and rainsplash detachment. Trans. ASAE, 46, 5162.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., and Z. Levin, 1986: The lognormal fit to raindrop spectra from frontal convective clouds in Israel. J. Climate Appl. Meteor., 25, 13461363, doi:10.1175/1520-0450(1986)025<1346:TLFTRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankel, A., H. Pouransari, F. Coletti, and A. Mani, 2016: Settling of heated particles in homogeneous turbulence. J. Fluid Mech., 792, 869893, doi:10.1017/jfm.2016.102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrich, K., E. A. Kalina, F. J. Masters, and C. R. Lopez, 2013a: Drop-size distributions in thunderstorms measured by optical disdrometers during VORTEX2. Mon. Wea. Rev., 141, 11821203, doi:10.1175/MWR-D-12-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrich, K., S. Higgins, F. J. Masters, and C. R. Lopez, 2013b: Articulating and stationary Parsivel disdrometer measurements in conditions with strong winds and heavy rainfall. J. Atmos. Oceanic Technol., 30, 20632080, doi:10.1175/JTECH-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and L. P. Wang, 2013: Growth of cloud droplets in a turbulent environment. Ann. Rev. Fluid. Mech., 45, 293–324, doi:10.1146/annurev-fluid-011212-140750.

    • Crossref
    • Export Citation
  • Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243248, doi:10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., M. L. Larsen, and A. B. Kostinski, 2015: Disdrometer network observations of finescale spatial–temporal clustering in rain. J. Atmos. Sci., 72, 16481666, doi:10.1175/JAS-D-14-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and Coauthors, 2016: The Midlatitude Continental Convective Clouds Experiment (MC3E). Bull. Amer. Meteor. Soc., 97, 16671686, doi:10.1175/BAMS-D-14-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., M. Pinsky, T. Elperin, N. Kleeorin, I. Rogachevskii, and A. Kostinski, 2007: Critical comments to results of investigations of drop collisions in turbulent clouds. Atmos. Res., 86, 120, doi:10.1016/j.atmosres.2007.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, T., and A. Adachi, 2001: Measurements of raindrop breakup by using UHF wind profilers. Geophys. Res. Lett., 28, 40714074, doi:10.1029/2001GL013254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602617, doi:10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lack, S. A., and N. I. Fox, 2007: An examination of the effect of wind-drift on radar-derived surface rainfall estimations. Atmos. Res., 85, 217229, doi:10.1016/j.atmosres.2006.09.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larsen, M. L., A. B. Kostinski, and A. R. Jameson, 2014: Further evidence for superterminal raindrops. Geophys. Res. Lett., 41, 69146918, doi:10.1002/2014GL061397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • List, R., and D. M. Whelpdale, 1969: A preliminary investigation of factors affecting the coalescence of colliding water drops. J. Atmos. Sci., 26, 305308, doi:10.1175/1520-0469(1969)026<0305:APIOFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • List, R., and G. M. McFarquhar, 1990: The role of breakup and coalescence in the three-peak equilibrium distribution of raindrops. J. Atmos. Sci., 47, 22742292, doi:10.1175/1520-0469(1990)047<2274:TROBAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loffler-Mang, M., and J. Joss, 2000: An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol., 17, 130139, doi:10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maeso, J., V. N. Bringi, S. Cruz-Pol, and V. Chandrasekar, 2005: DSD characterization and computations of expected reflectivity using data from a two-dimensional video disdrometer deployed in a tropical environment. Proc. Int. Geoscience and Remote Sensing Symp., Seoul, South Korea, IEEE, 5073–5076, doi:10.1109/IGARSS.2005.1526820.

    • Crossref
    • Export Citation
  • Maguire, W. B., and S. K. Avery, 1994: Retrieval of raindrop size distributions using two Doppler wind profilers: Model sensitivity testing. J. Appl. Meteor., 33, 16231635, doi:10.1175/1520-0450(1994)033<1623:RORSDU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., 2010: Raindrop size distribution and evolution. Rainfall: State of the Science, Geophys. Monogr., Vol. 191, Amer. Geophys. Union, 49–60.

    • Crossref
    • Export Citation
  • McTaggart-Cowan, J. D., and R. List, 1975: Collision and breakup of water drops at terminal velocity. J. Atmos. Sci., 32, 14011411, doi:10.1175/1520-0469(1975)032<1401:CABOWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moisseev, D. N., and V. Chandrasekar, 2007: Examination of the μ–Λ relation suggested for drop size distribution parameters. J. Atmos. Oceanic Technol., 24, 847855, doi:10.1175/JTECH2010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montero-Martinez, G., A. B. Kostinski, R. A. Shaw, and F. Garcia-Garcia, 2009: Do all raindrops fall at terminal speed? Geophys. Res. Lett., 36, L11818, doi:10.1029/2008GL037111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OFCM, 2005: Federal meteorological handbook No. 1: Surface weather observations and reports, FCM-H1-2005, 104 pp. [Available online at http://www.ofcm.gov/publications/fmh/FMH1/FMH1.pdf.]

  • Pedersen, H. S., and B. Hasholt, 1995: Influence of wind speed on rainsplash erosion. Catena, 24, 3954, doi:10.1016/0341-8162(94)00024-9.

  • Peters, G., B. Fischer, and T. Andersson, 2002: Rain observations with a vertically looking micro rain radar (MRR). Boreal Environ. Res., 7, 353362.

    • Search Google Scholar
    • Export Citation
  • Peters, G., B. Fischer, H. Münster, M. Clemens, and A. Wagner, 2005: Profiles of raindrop size distributions as retrieved by microrain radars. J. Appl. Meteor., 44, 19301949, doi:10.1175/JAM2316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and M. Jensen, 2012: The NASA-GPM and DOE-ARM Midlatitude Continental Convective Clouds Experiment (MC3E). The Earth Observer, Vol. 24, NASA GSFC, Greenbelt, MD, 12–18. [Available online at https://eospso.nasa.gov/sites/default/files/eo_pdfs/Jan_Feb_2012_col_508.pdf#page=12.]

  • Pinsky, M. B., and A. P. Khain, 1996: Simulations of drop fall in a homogeneous isotropic turbulent flow. Atmos. Res., 40, 223259, doi:10.1016/0169-8095(95)00047-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, doi:10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., A. P. Barros, and F. Y. Testik, 2012: On the influence of raindrop collision outcomes on equilibrium drop size distributions. J. Atmos. Sci., 69, 15341546, doi:10.1175/JAS-D-11-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., 1989: Raindrop collision rates. J. Atmos. Sci., 46, 24692472, doi:10.1175/1520-0469(1989)046<2469:RCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., A. V. Ryzhkov, D. S. Zrnic, and M. Schoenhuber, 2001: Drop size distributions measured by a 2D video disdrometer: Comparison with dual-polarization radar data. J. Appl. Meteor., 40, 10191034, doi:10.1175/1520-0450(2001)040<1019:DSDMBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., L. Nuijens, and B. Stevens, 2010: Turbulence effects on warm-rain autoconversion in precipitating shallow convection. Quart. J. Roy. Meteor. Soc., 136, 17531762, doi:10.1002/qj.684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1967: On the role of coalescence between raindrops in shaping their size distribution. J. Atmos. Sci., 24, 287292, doi:10.1175/1520-0469(1967)024<0287:OTROCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1971: Size distribution of raindrops generated by their breakup and coalescence. J. Atmos. Sci., 28, 410415, doi:10.1175/1520-0469(1971)028<0410:SDORGB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, doi:10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testik, F. Y., 2009: Outcome regimes of binary raindrop collisions. Atmos. Res., 94, 389399, doi:10.1016/j.atmosres.2009.06.017.

  • Testik, F. Y., and A. P. Barros, 2007: Toward elucidating the microstructure of warm rainfall: A survey. Rev. Geophys., 45, RG2003, doi:10.1029/2005RG000182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testik, F. Y., and M. Gebremichael, Eds., 2010: Rainfall: State of the Science. Geophys. Monogr., Vol. 191, Amer. Geophys. Union, 287 pp.

  • Testik, F. Y., A. P. Barros, and L. F. Bliven, 2006: Field observations of multimode raindrop oscillations by high-speed imaging. J. Atmos. Sci., 63, 26632668, doi:10.1175/JAS3773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testik, F. Y., A. P. Barros, and L. F. Bliven, 2011: Toward a physical characterization of raindrop collision outcome regimes. J. Atmos. Sci., 68, 10971113, doi:10.1175/2010JAS3706.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, P. Amayenc, and R. A. Black, 2001: The concept of “normalized” distributions to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, doi:10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., V. N. Bringi, and P. T. May, 2010: CPOL radar–derived drop size distribution statistics of stratiform and convective rain for two regimes in Darwin, Australia. J. Atmos. Oceanic Technol., 27, 932942, doi:10.1175/2010JTECHA1349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., V. N. Bringi, W. A. Petersen, and P. N. Gatlin, 2013: Drop shapes and fall speeds in rain: Two contrasting examples. J. Appl. Meteor. Climatol., 52, 25672581, doi:10.1175/JAMC-D-12-085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurai, M., C. R. Williams, and V. N. Bringi, 2014: Examining the correlations between drop size distribution parameters using data from two side-by-side 2D-video disdrometers. Atmos. Res., 144, 95110, doi:10.1016/j.atmosres.2014.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355371, doi:10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., A. Kruger, and W. F. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteor., 40, 20832097, doi:10.1175/1520-0450(2001)040<2083:CODSDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., P. G. Bashor, E. Habib, and T. Kasparis, 2008: Raindrop size distribution measurements in tropical cyclones. Mon. Wea. Rev., 136, 16691685, doi:10.1175/2007MWR2122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, doi:10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and L. G. Lee, 2002: Rainfall characteristics associated with the remnants of Tropical Storm Helene in upstate South Carolina. Wea. Forecasting, 17, 12571267, doi:10.1175/1520-0434(2002)017<1257:RCAWTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villermaux, E., and B. Bossa, 2009: Single-drop fragmentation determines size distribution of raindrops. Nat. Phys., 5, 697702, doi:10.1038/nphys1340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and M. Maxey, 1993: Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech., 256, 2768, doi:10.1017/S0022112093002708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., A. S. Wexler, and Y. Zhou, 1998: Statistical mechanical descriptions of turbulent coagulation. Phys. Fluids, 10, 26472651, doi:10.1063/1.869777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wieringa, J., 1992: Updating the Davenport roughness classification. J. Wind Eng. Ind. Aerodyn., 41, 357368, doi:10.1016/0167-6105(92)90434-C.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. R., W. L. Ecklund, and K. S. Gage, 1995: Classification of precipitating clouds in the tropics using 915-MHz wind profilers. J. Atmos. Oceanic Technol., 12, 9961012, doi:10.1175/1520-0426(1995)012<0996:COPCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. R., and Coauthors, 2014: Describing the shape of raindrop size distributions using uncorrelated raindrop mass spectrum parameters. J. Appl. Meteor. Climatol., 53, 12821296, doi:10.1175/JAMC-D-13-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 452 192 17
PDF Downloads 564 314 14

Wind Effects on the Shape of Raindrop Size Distribution

View More View Less
  • 1 Department of Civil and Environmental Engineering, The University of Texas at San Antonio, San Antonio, Texas
  • | 2 Impact Forecasting, Aon Benfield, Chicago, Illinois
Restricted access

Abstract

The wind effects on the shape of drop size distribution (DSD) and the driving microphysical processes for the DSD shape evolution were investigated using the dataset from the Midlatitude Continental Convective Clouds Experiment (MC3E). The quality-controlled DSD spectra from MC3E were grouped for each of the rainfall events by considering the precipitation type (stratiform vs convective) and liquid water content for the analysis. The DSD parameters (e.g., mass-weighted mean diameter) and the fitted DSD slopes for these grouped spectra showed statistically significant trends with varying wind speed. Increasing wind speeds were observed to modify the DSD shapes by increasing the number of small drops and decreasing the number of large drops, indicating that the raindrop breakup process governs the DSD shape evolution. Both spontaneous and collisional raindrop breakup modes were analyzed to elucidate the process responsible for the DSD shape evolution with varying wind speed. The analysis revealed that the collisional breakup process controls the wind-induced DSD shape. The findings of this study are of importance in DSD parameterizations that are essential to a wide variety of applications such as radar rainfall retrievals and hydrologic models.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Firat Y. Testik, firat.testik@utsa.edu

Abstract

The wind effects on the shape of drop size distribution (DSD) and the driving microphysical processes for the DSD shape evolution were investigated using the dataset from the Midlatitude Continental Convective Clouds Experiment (MC3E). The quality-controlled DSD spectra from MC3E were grouped for each of the rainfall events by considering the precipitation type (stratiform vs convective) and liquid water content for the analysis. The DSD parameters (e.g., mass-weighted mean diameter) and the fitted DSD slopes for these grouped spectra showed statistically significant trends with varying wind speed. Increasing wind speeds were observed to modify the DSD shapes by increasing the number of small drops and decreasing the number of large drops, indicating that the raindrop breakup process governs the DSD shape evolution. Both spontaneous and collisional raindrop breakup modes were analyzed to elucidate the process responsible for the DSD shape evolution with varying wind speed. The analysis revealed that the collisional breakup process controls the wind-induced DSD shape. The findings of this study are of importance in DSD parameterizations that are essential to a wide variety of applications such as radar rainfall retrievals and hydrologic models.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Firat Y. Testik, firat.testik@utsa.edu
Save