• Alexander, M. A., J. D. Scott, D. Swales, M. Hughes, K. Mahoney, and C. S. Smith, 2015: Moisture pathways into the U.S. Intermountain West associated with heavy winter precipitation events. J. Hydrometeor., 16, 11841206, doi:10.1175/JHM-D-14-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armstrong, R. L., and B. Armstrong, 1987: Snow and avalanche climates of the western United States: A comparison of coastal, intermountain and continental conditions. IAHS Publ., 162, 281294.

    • Search Google Scholar
    • Export Citation
  • Atkins, D., 2007: United States avalanche fatalities. Avalance.org, accessed October 2015. [Available online at http://www.avalanche.org/accidents.php.]

  • Atwater, M. M., 1954: Snow avalanches. Sci. Amer., 190, 2631, doi:10.1038/scientificamerican0154-26.

  • Bair, E. H., 2013: Forecasting artificially-triggered avalanches in storm snow at a large ski area. Cold Reg. Sci. Technol., 85, 261269, doi:10.1016/j.coldregions.2012.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bair, E. H., R. Simenhois, K. Birkeland, and J. Dozier, 2012: A field study on failure of storm snow slab avalanches. Cold Reg. Sci. Technol., 79–80, 2028, doi:10.1016/j.coldregions.2012.02.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J. W., S. A. Michelson, P. J. Neiman, F. M. Ralph, and J. M. Wilczak, 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 10631080, doi:10.1175/MWR3123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartelt, P., and M. Lehning, 2002: A physical SNOWPACK model for the Swiss avalanche warning: Part I: Numerical model. Cold Reg. Sci. Technol., 35, 123145, doi:10.1016/S0165-232X(02)00074-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birkeland, K. W., and C. J. Mock, 1996: Atmospheric circulation patterns associated with heavy snowfall events, Bridger Bowl, Montana, U.S.A. Mt. Res. Dev., 16, 281286, doi:10.2307/3673951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birkeland, K. W., C. J. Mock, and J. J. Shinker, 2001: Avalanche extremes and atmospheric circulation patterns. Ann. Glaciol., 32, 135140, doi:10.3189/172756401781819030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackford, J. R., 2007: Sintering and microstructure of ice: A review. J. Phys. D Appl. Phys., 40, R355R385, doi:10.1088/0022-3727/40/21/R02.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blöschl, G., 1999: Scaling issues in snow hydrology. Hydrol. Processes, 13, 21492175, doi:10.1002/(SICI)1099-1085(199910)13:14/15<2149::AID-HYP847>3.0.CO;2-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, J., and D. McClung, 1999: Full-depth avalanche occurrences caused by snow gliding, Coquihalla, British Columbia, Canada. J. Glaciol., 45, 539546, doi:10.1017/S0022143000001404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colorado Avalanche Information Center, 2015: Colorado avalanche incident archive. Accessed October 2015. [Available online at http://avalanche.state.co.us/accidents/us/.]

  • Conway, H., and C. F. Raymond, 1993: Snow stability during rain. J. Glaciol., 39, 635642, doi:10.1017/S0022143000016531.

  • Cordeira, J., F. M. Ralph, A. Martin, N. Gaggini, R. Spackman, P. Neiman, J. Rutz, and R. Pierce, 2017: Forecasting atmospheric rivers during CalWater 2015. Bull. Amer. Meteor. Soc., 98, 449459, doi: 10.1175/BAMS-D-15-00245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric rivers, floods, and the water resources of California. Water, 3, 445478, doi:10.3390/w3020445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, doi:10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elder, K., J. Dozier, and J. Michaelsen, 1989: Spatial and temporal variation of net snow accumulation in a small alpine watershed, Emerald Lake basin, Sierra Nevada, California, U.S.A. Ann. Glaciol., 13, 5663, doi:10.1017/S0260305500007643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esteban, P., P. D. Jones, J. Martín-Vide, and M. Mases, 2005: Atmospheric circulation patterns related to heavy snowfall days in Andorra, Pyrenees. Int. J. Climatol., 25, 319329, doi:10.1002/joc.1103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fredston, J., and D. Fesler, 2011: Snow Sense. Alaska Mountain Safety Center, 132 pp.

  • Guan, B., D. E. Waliser, F. M. Ralph, E. J. Fetzer, and P. J. Neiman, 2016: Hydrometeorological characteristics of rain-on-snow events associated with atmospheric rivers. Geophys. Res. Lett., 43, 29642973, doi:10.1002/2016GL067978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, C. S., and S. J. Underwood, 2012: Synoptic-scale weather patterns and large slab avalanches at Mt. Shasta, California. Northwest Sci., 86, 329341, doi:10.3955/046.086.0408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirashima, H., K. Nishimura, S. Yamaguchi, A. Sato, and M. Lehning, 2008: Avalanche forecasting in a heavy snowfall area using the SNOWPACK model. Cold Reg. Sci. Technol., 51, 191203, doi:10.1016/j.coldregions.2007.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, P., J. Eischeid, and R. Pyle, 1994: Interannual variability of the onset of the Indian summer monsoon and its association with atmospheric features, El Niño, and sea surface temperature anomalies. J. Climate, 7, 81105, doi:10.1175/1520-0442(1994)007<0081:IVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapnick, S., and A. Hall, 2012: Causes of recent changes in western North American snowpack. Climate Dyn., 38, 18851899, doi:10.1007/s00382-011-1089-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krasting, J. P., A. J. Broccoli, K. W. Dixon, and J. R. Lanzante, 2013: Future changes in Northern Hemisphere snowfall. J. Climate, 26, 78137828, doi:10.1175/JCLI-D-12-00832.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaChapelle, E., 1980: Fundamental processes in conventional avalanche forecasting. J. Glaciol., 26, 7584, doi:10.1017/S0022143000010601.

  • Lavers, D. A., F. Pappenberger, and E. Zsoter, 2014: Extending medium-range predictability of extreme hydrological events in Europe. Nat. Commun., 5, 5382, doi:10.1038/ncomms6382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., F. M. Ralph, D. E. Waliser, A. Gershunov, and M. D. Dettinger, 2015: Climate change intensification of horizontal water vapor transport in CMIP5. Geophys. Res. Lett., 42, 56175625, doi:10.1002/2015GL064672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., D. E. Waliser, F. M. Ralph, and M. D. Dettinger, 2016: Predictability of horizontal water vapor transport relative to precipitation: Enhancing situational awareness for forecasting western U.S. extreme precipitation and flooding. Geophys. Res. Lett., 43, 22752282, doi:10.1002/2016GL067765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and Y. Qian, 2009: Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys. Res. Lett., 36, L03820, doi:10.1029/2008GL036445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marienthal, A., J. Hendrikx, K. Birkeland, and K. M. Irvine, 2015: Meteorological variables to aid forecasting deep slab avalanches on persistent weak layers. Cold Reg. Sci. Technol., 120, 227236, doi:10.1016/j.coldregions.2015.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, D., J. Kimball, D. Tingey, and T. Link, 1998: The sensitivity of snowmelt processes to climate conditions and forest cover during rain-on-snow: A case study of the 1996 Pacific Northwest flood. Hydrol. Processes, 12, 15691587, doi:10.1002/(SICI)1099-1085(199808/09)12:10/11<1569::AID-HYP682>3.0.CO;2-L.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C., and D. Portman, 1989: Major volcanic eruptions and climate: A critical evaluation. J. Climate, 2, 566593, doi:10.1175/1520-0442(1989)002<0566:MVEACA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. P. Clark, and L. E. Hay, 2007: Rain-on-snow events in the western United States. Bull. Amer. Meteor. Soc., 88, 319328, doi:10.1175/BAMS-88-3-319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McClung, D. M., 1981: Fracture mechanical models of dry slab avalanche release. J. Geophys. Res., 86, 10 78310 790, doi:10.1029/JB086iB11p10783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McClung, D. M., 2002: The elements of applied avalanche forecasting, Part I: The human issues. Nat. Hazards, 26, 111129, doi:10.1023/A:1015665432221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meek, D. W., and J. L. Hatfield, 1994: Data quality checking for single station meteorological databases. Agric. For. Meteor., 69, 85109, doi:10.1016/0168-1923(94)90083-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

  • Mock, C. J., and K. W. Birkeland, 2000: Snow avalanche climatology of the western United States mountain ranges. Bull. Amer. Meteor. Soc., 81, 23672392, doi:10.1175/1520-0477(2000)081<2367:SACOTW>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mundhenk, B. D., E. A. Barnes, E. D. Maloney, and K. M. Nardi, 2016: Modulation of atmospheric rivers near Alaska and the U.S. West Coast by northeast Pacific height anomalies. J. Geophys. Res. Atmos., 121, 12 75112 756, doi:10.1002/2016JD025350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muntán, E., C. García, P. Oller, G. Martí, A. García, and E. Gutiérrez, 2009: Reconstructing snow avalanches in the southeastern Pyrenees. Nat. Hazards Earth Syst. Sci., 9, 15991612, doi:10.5194/nhess-9-1599-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Narita, H., 1980: Mechanical behavior and structure of snow under uniaxial tensile stress. J. Glaciol., 26, 275282, doi:10.1017/S0022143000010819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Research Council, 1990: Snow Avalanche Hazards and Mitigation in the United States. National Academies Press, 84 pp.

  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, doi:10.1175/2007JHM855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, doi:10.1175/2011JHM1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perla, R. I., 1970: On contributory factors in avalanche hazard evaluation. Can. Geotech. J., 7, 414419, doi:10.1139/t70-053.

  • Polade, S. D., D. W. Pierce, D. R. Cayan, A. Gershunov, and M. D. Dettinger, 2014: The key role of dry days in changing regional climate and precipitation regimes. Nat. Sci. Rep., 4, 4364, doi:10.1038/srep04364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raleigh, M. S., and J. D. Lundquist, 2012: Comparing and combining SWE estimates from the SNOW-17 model using PRISM and SWE reconstruction. Water Resour. Res., 48, W01506, doi:10.1029/2011WR010542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and M. D. Dettinger, 2012: Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783790, doi:10.1175/BAMS-D-11-00188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., T. Coleman, P. J. Neiman, R. J. Zamora, and M. D. Dettinger, 2013a: Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal Northern California. J. Hydrometeor., 14, 443459, doi:10.1175/JHM-D-12-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2013b: The emergence of weather-focused test beds linking research and forecasting operations. Bull. Amer. Meteor. Soc., 94, 11871211, doi:10.1175/BAMS-D-12-00080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of cool season atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, doi:10.1175/MWR-D-13-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2015: The inland penetration of atmospheric rivers over western North America: A Lagrangian analysis. Mon. Wea. Rev., 143, 19241944, doi:10.1175/MWR-D-14-00288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schweizer, J., and J. B. Jamieson, 2001: Snow cover properties for skier triggering of avalanches. Cold Reg. Sci. Technol., 33, 207221, doi:10.1016/S0165-232X(01)00039-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schweizer, J., and J. B. Jamieson, 2003: Snowpack properties for snow profile interpretation. Cold Reg. Sci. Technol., 37, 233241, doi:10.1016/S0165-232X(03)00067-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schweizer, J., J. B. Jamieson, and M. Schneebeli, 2003: Snow avalanche formation. Rev. Geophys., 41, 1016, doi:10.1029/2002RG000123.

  • Schweizer, J., K. Kronholm, J. B. Jamieson, and K. W. Birkeland, 2008: Review of spatial variability of snowpack properties and its importance for avalanche formation. Cold Reg. Sci. Technol., 51, 253272, doi:10.1016/j.coldregions.2007.04.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. P. Clark, and A. Frei, 2001: Characteristics of large snowfall events in the montane western United States as examined using snowpack telemetry (SNOTEL) data. Water Resour. Res., 37, 675688, doi:10.1029/2000WR900307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stimberis, J., and C. M. Rubin, 2011: Glide avalanche response to an extreme rain-on- snow event, Snoqualmie Pass, Washington, USA. J. Glaciol., 57, 468474, doi:10.3189/002214311796905686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swales, D., M. Alexander, and M. Hughes, 2016: Examining moisture pathways and extreme precipitation in the U.S. Intermountain West using self-organizing maps. Geophys. Res. Lett., 43, 17271735, doi:10.1002/2015GL067478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, M. D., C. F. Mass, and E. P. Salathé, 2012: Wintertime extreme precipitation events along the Pacific Northwest coast: Climatology and synoptic evolution. Mon. Wea. Rev., 140, 20212043, doi:10.1175/MWR-D-11-00197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 705 338 11
PDF Downloads 414 198 3

Avalanche Fatalities during Atmospheric River Events in the Western United States

View More View Less
  • 1 Division of Atmospheric Science, Desert Research Institute, Reno, Nevada
  • | 2 Snow Survey Associates, Bishop, California
  • | 3 Western Region Headquarters, National Weather Service, Salt Lake City, Utah
  • | 4 Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 5 Earth Research Institute, University of California, Santa Barbara, Santa Barbara, California
Restricted access

Abstract

The occurrence of atmospheric rivers (ARs) in association with avalanche fatalities is evaluated in the conterminous western United States between 1998 and 2014 using archived avalanche reports, atmospheric reanalysis products, an existing AR catalog, and weather station observations. AR conditions were present during or preceding 105 unique avalanche incidents resulting in 123 fatalities, thus comprising 31% of western U.S. avalanche fatalities. Coastal snow avalanche climates had the highest percentage of avalanche fatalities coinciding with AR conditions (31%–65%), followed by intermountain (25%–46%) and continental snow avalanche climates (<25%). Ratios of avalanche deaths during AR conditions to total AR days increased with distance from the coast. Frequent heavy to extreme precipitation (85th–99th percentile) during ARs favored critical snowpack loading rates with mean snow water equivalent increases of 46 mm. Results demonstrate that there exists regional consistency between snow avalanche climates, derived AR contributions to cool season precipitation, and percentages of avalanche fatalities during ARs. The intensity of water vapor transport and topographic corridors favoring inland water vapor transport may be used to help identify periods of increased avalanche hazard in intermountain and continental snow avalanche climates prior to AR landfall. Several recently developed AR forecast tools applicable to avalanche forecasting are highlighted.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0219.s1.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Benjamin J. Hatchett, benjamin.hatchett@gmail.com

Abstract

The occurrence of atmospheric rivers (ARs) in association with avalanche fatalities is evaluated in the conterminous western United States between 1998 and 2014 using archived avalanche reports, atmospheric reanalysis products, an existing AR catalog, and weather station observations. AR conditions were present during or preceding 105 unique avalanche incidents resulting in 123 fatalities, thus comprising 31% of western U.S. avalanche fatalities. Coastal snow avalanche climates had the highest percentage of avalanche fatalities coinciding with AR conditions (31%–65%), followed by intermountain (25%–46%) and continental snow avalanche climates (<25%). Ratios of avalanche deaths during AR conditions to total AR days increased with distance from the coast. Frequent heavy to extreme precipitation (85th–99th percentile) during ARs favored critical snowpack loading rates with mean snow water equivalent increases of 46 mm. Results demonstrate that there exists regional consistency between snow avalanche climates, derived AR contributions to cool season precipitation, and percentages of avalanche fatalities during ARs. The intensity of water vapor transport and topographic corridors favoring inland water vapor transport may be used to help identify periods of increased avalanche hazard in intermountain and continental snow avalanche climates prior to AR landfall. Several recently developed AR forecast tools applicable to avalanche forecasting are highlighted.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0219.s1.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Benjamin J. Hatchett, benjamin.hatchett@gmail.com

Supplementary Materials

    • Supplemental Materials (XLSX 24.98 KB)
Save