• Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. General Circulation Models of the Atmosphere, J. Chang, Ed., Methods in Computational Physics, Vol. 17, Elsevier, 173265, doi:10.1016/B978-0-12-460817-7.50009-4.

    • Crossref
    • Export Citation
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, doi:10.1175/MWR-D-10-05013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartholomé, E., and A. Belward, 2005: GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens., 26, 19591977, doi:10.1080/01431160412331291297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., S.-Y. Ha, J. Hacker, A. Fournier, and C. Snyder, 2011: Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. Mon. Wea. Rev., 139, 19721995, doi:10.1175/2010MWR3595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., A. Arribas, K. R. Mylne, K. B. Robertson, and S. E. Beare, 2008: The MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 134, 703722, doi:10.1002/qj.234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, F. J., 2005: Mesoskalige Modellierung der Bodenhydrologie. Dissertation, Institut für Meteorologie und Klimaforschung, Universität Karlsruhe, 230 pp. [Available online at https://publikationen.bibliothek.kit.edu/5432002.]

  • Braun, F. J., and G. Schädler, 2005: Comparison of soil hydraulic parameterizations for mesoscale meteorological models. J. Appl. Meteor., 44, 11161132, doi:10.1175/JAM2259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Milleer, and T. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 28872908, doi:10.1002/qj.49712556006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and O. B. Christensen, 2007: A summary of the prudence model projections of changes in European climate by the end of this century. Climatic Change, 81, 730, doi:10.1007/s10584-006-9210-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosby, B., G. Hornberger, R. Clapp, and T. Ginn, 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20, 682690, doi:10.1029/WR020i006p00682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83, 18891903, doi:10.1029/JC083iC04p01889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F., and Coauthors, 2009: Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts. Quart. J. Roy. Meteor. Soc., 135, 15381559, doi:10.1002/qj.464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doms, G., and Coauthors, 2011: A description of the nonhydrostatic regional COSMO model. Part I: Dynamics and numerics. Tech. Rep., Deutscher Wetterdienst, 158 pp. [Available online at http://www.cosmo-model.org/content/model/documentation/core/cosmoDyncsNumcs.pdf.]

  • Dorman, J., and P. J. Sellers, 1989: A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere Model (SiB). J. Appl. Meteor., 28, 833855, doi:10.1175/1520-0450(1989)028<0833:AGCOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J., 1993: Sensitivity of climate simulations to land-surface and atmospheric boundary-layer treatments—A review. J. Climate, 6, 419448, doi:10.1175/1520-0442(1993)006<0419:SOCSTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabe, F., 2002: Simulation der Wechselwirkung zwischen Atmosphäre, Vegetation und Erdoberfläche bei Verwendung unterschiedlicher Parametrisierungsansätze. Dissertation, Institut für Meteorologie und Klimaforschung, Universität Karlsruhe, 193 pp.

  • Gutmann, E. D., and E. E. Small, 2007: A comparison of land surface model soil hydraulic properties estimated by inverse modeling and pedotransfer functions. Water Resour. Res., 43, doi:10.1029/2006WR005135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hackenbruch, J., G. Schädler, and J. W. Schipper, 2016: Added value of high-resolution regional climate simulations for regional impact studies. Meteor. Z., 26, 291304, doi:10.1127/metz/2016/0701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., F. J. Doblas-Reyes, and T. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus, 57A, 219233, doi:10.1111/j.1600-0870.2005.00103.x.

    • Search Google Scholar
    • Export Citation
  • Haylock, M., N. Hofstra, A. Klein Tank, E. Klok, P. Jones, and M. New, 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119, doi:10.1029/2008JD010201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., 1993: A factorial assessment of the sensitivity of the BATS land-surface parameterization scheme. J. Climate, 6, 227247, doi:10.1175/1520-0442(1993)006<0227:AFAOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, D., and Coauthors, 2014: EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Change, 14, 563578, doi:10.1007/s10113-013-0499-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johansen, O., 1977: Thermal conductivity of soils. Tech. Rep. CRREL TL 637, 291 pp. [Available online at http://www.dtic.mil/dtic/tr/fulltext/u2/a044002.pdf.]

    • Crossref
    • Export Citation
  • Khodayar, S., A. Sehlinger, H. Feldmann, and C. Kottmeier, 2015: Sensitivity of soil moisture initialization for decadal predictions under different regional climatic conditions in Europe. Int. J. Climatol., 35, 18991915, doi:10.1002/joc.4096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohler, M., G. Schädler, L. Gantner, N. Kalthoff, F. Königer, and C. Kottmeier, 2012: Validation of two SVAT models for different periods during the West African monsoon. Meteor. Z., 21, 509524, doi:10.1127/0941-2948/2012/0490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, J., R. Jacob, and E. Ong, 2005: The model coupling toolkit: a new Fortran90 toolkit for building multiphysics parallel coupled models. Int. J. High Perform. Comput. Appl., 19, 277292, doi:10.1177/1094342005056115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenz, C.-J., 1996: Energieumsätze an der Erdoberfläche in gegliedertem Gelände. Dissertation, Institut für Meteorologie und Klimaforschung, Universität Karlsruhe, 246 pp.

  • McPherson, R. A., 2007: A review of vegetation–atmosphere interactions and their influences on mesoscale phenomena. Prog. Phys. Geogr., 31, 261285, doi:10.1177/0309133307079055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meissner, C., 2008: High-resolution sensitivity with the regional climate model COSMO-CLM. Dissertation, Institut für Meteorologie und Klimaforschung, Universität Karlsruhe, 191 pp., doi:10.5445/KSP/1000007813.

    • Crossref
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mölders, N., 2005: Plant- and soil-parameter-caused uncertainty of predicted surface fluxes. Mon. Wea. Rev., 133, 34983516, doi:10.1175/MWR3046.1.

  • Neisser, J., W. Adam, F. Beyrich, U. Leiterer, and H. Steinhagen, 2002: Atmospheric boundary layer monitoring at the Meteorological Observatory Lindenberg as a part of the “Lindenberg Column”: Facilities and selected results. Meteor. Z., 11, 241253, doi:10.1127/0941-2948/2002/0011-0241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and E. A. Eltahir, 2001: Pathways relating soil moisture conditions to future summer rainfall within a model of the land–atmosphere system. J. Climate, 14, 12271242, doi:10.1175/1520-0442(2001)014<1227:PRSMCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parameterization in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127, 279304, doi:10.1002/qj.49712757202.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 598, 44 pp. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2009/11577-stochastic-parametrization-and-model-uncertainty.pdf.]

  • Pielke, R. A., 2013: Mesoscale Meteorological Modeling. 3rd ed. International Geophysics, Vol. 98 Academic Press, 760 pp.

    • Crossref
    • Export Citation
  • Pielke, R. A., G. Dalu, J. Snook, T. Lee, and T. Kittel, 1991: Nonlinear influence of mesoscale land use on weather and climate. J. Climate, 4, 10531069, doi:10.1175/1520-0442(1991)004<1053:NIOMLU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., T. Lee, J. Copeland, J. Eastman, C. Ziegler, and C. Finley, 1997: Use of USGS-provided data to improve weather and climate simulations. Ecol. Appl., 7, 321, doi:10.1890/1051-0761(1997)007[0003:UOUPDT]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plant, R., and G. C. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65, 87105, doi:10.1175/2007JAS2263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2013: The data assimilation system and initial performance evaluation of the ECMWF pilot re-analysis of the 20th-century assimilating surface observations only (ERA-20c). ERA Rep. Series 14, ECMWF, 62 pp. [Available online at http://www.ecmwf.int/en/elibrary/11699-data-assimilation-system-and-initial-performance-evaluation-ecmwf-pilot-reanalysis.]

  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, doi:10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raschendorfer, M., 2001: The new turbulence parameterization of LM. COSMO Newsletter, No. 1, Consortium for Small-Scale Modeling, Offenbach, Germany, 89–97. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter01/newsLetter_01.pdf.]

  • Ritter, B., and J.-F. Geleyn, 1992: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120, 303325, doi:10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rockel, B., A. Will, and A. Hense, 2008: The regional climate model COSMO-CLM (CCLM). Meteor. Z., 17, 347348, doi:10.1127/0941-2948/2008/0309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schädler, G., 1990: Numerische Simulationen zur Wechselwirkung zwischen Landoberfläche und atmosphärischer Grenzschicht. Dissertation, Institut für Meteorologie und Klimaforschung, Universität Karlsruhe, 217 pp.

  • Schär, C., D. Lüthi, U. Beyerle, and E. Heise, 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722741, doi:10.1175/1520-0442(1999)012<0722:TSPFAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrodin, E., and E. Heise, 2002: A new multi-layer soil model. COSMO Newsletter, No. 2, Consortium for Small-Scale Modeling, Offenbach, Germany, 149–151. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter02/newsLetter_02.pdf.]

  • Seifert, A., and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion and self-collection. Atmos. Res., 59–60, 265281, doi:10.1016/S0169-8095(01)00126-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stainforth, D. A., and Coauthors, 2005: Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433, 403406, doi:10.1038/nature03301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., J.-W. Bao, and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128, 20772107, doi:10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 2012: An Introduction to Boundary Layer Meteorology. Springer, 670 pp.

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valcke, S., 2013: The OASIS3 coupler: A European climate modelling community software. Geosci. Model Dev., 6, 373388, doi:10.5194/gmd-6-373-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valcke, S., T. Craig, and L. Coquart, Eds., 2015: OASIS3-MCT user guide OASIS3-MCT 3.0. CERFACS/CNRS SUC URA 1875, 58 pp. [Available online at http://www.cerfacs.fr/oa4web/oasis3-mct_3.0/oasis3mct_UserGuide.pdf.]

  • Van Genuchten, M. T., 1980: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J., 44, 892898, doi:10.2136/sssaj1980.03615995004400050002x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, doi:10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiernga, J., 1993: Representative roughness parameters for homogeneous terrain. Bound.-Layer Meteor., 63, 323363, doi:10.1007/BF00705357.

  • Will, A., and Coauthors, 2017: The COSMO-CLM 4.8 regional climate model coupled to regional ocean, land surface and global Earth system models using OASIS3-MCT: Description and performance. Geosci. Model Dev., 10, 15491586, doi:10.5194/gmd-10-1549-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 143 66 5
PDF Downloads 65 30 1

Quantification of the Uncertainties in Soil and Vegetation Parameterizations for Regional Climate Simulations in Europe

View More View Less
  • 1 Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Restricted access

Abstract

The deterministic description of the subgrid-scale land–atmosphere interaction in regional climate model (RCM) simulations is changed by using stochastic soil and vegetation parameterizations. For this, the land–atmosphere interaction parameterized in a land surface model (LSM) is perturbed stochastically by adding a random value to the input parameters using a random number generator. In this way, a stochastic ensemble is created that represents the impact of the uncertainties in these subgrid-scale processes on the resolved scale circulation. In a first step, stochastic stand-alone simulations with the VEG3D LSM are performed to identify sensitive model parameters. Afterward, VEG3D is coupled to the Consortium for Small-Scale Modeling–Climate Limited-Area Modeling (COSMO-CLM) RCM and stochastically perturbed simulations driven by ERA-Interim (2001–10) are performed for the Coordinated Downscaling Experiment–European Domain (EURO-CORDEX) at a horizontal resolution of 0.22°. The simulation results reveal that the impact of stochastically varied soil and vegetation parameterizations on the simulated climate conditions differs regionally. In central Europe the impact on the mean temperature and precipitation characteristics is very weak. In southern Europe and North Africa, however, the resolved scale circulation is very sensitive to the local soil water conditions. Furthermore, it is demonstrated that the use of stochastic soil and vegetation parameterizations considerably improves the variability of monthly rainfall sums all over Europe by improving the representation of the land–atmosphere interaction in the stochastic ensemble on a daily basis. In particular, inland rainfall during summer is simulated much better.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marcus Breil, marcus.breil@kit.edu

Abstract

The deterministic description of the subgrid-scale land–atmosphere interaction in regional climate model (RCM) simulations is changed by using stochastic soil and vegetation parameterizations. For this, the land–atmosphere interaction parameterized in a land surface model (LSM) is perturbed stochastically by adding a random value to the input parameters using a random number generator. In this way, a stochastic ensemble is created that represents the impact of the uncertainties in these subgrid-scale processes on the resolved scale circulation. In a first step, stochastic stand-alone simulations with the VEG3D LSM are performed to identify sensitive model parameters. Afterward, VEG3D is coupled to the Consortium for Small-Scale Modeling–Climate Limited-Area Modeling (COSMO-CLM) RCM and stochastically perturbed simulations driven by ERA-Interim (2001–10) are performed for the Coordinated Downscaling Experiment–European Domain (EURO-CORDEX) at a horizontal resolution of 0.22°. The simulation results reveal that the impact of stochastically varied soil and vegetation parameterizations on the simulated climate conditions differs regionally. In central Europe the impact on the mean temperature and precipitation characteristics is very weak. In southern Europe and North Africa, however, the resolved scale circulation is very sensitive to the local soil water conditions. Furthermore, it is demonstrated that the use of stochastic soil and vegetation parameterizations considerably improves the variability of monthly rainfall sums all over Europe by improving the representation of the land–atmosphere interaction in the stochastic ensemble on a daily basis. In particular, inland rainfall during summer is simulated much better.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marcus Breil, marcus.breil@kit.edu
Save