• Bellprat, O., S. Kotlarski, D. Lüthi, and C. Schär, 2013: Physical constraints for temperature biases in climate models. Geophys. Res. Lett., 40, 40424047, doi:10.1002/grl.50737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, A., and Coauthors, 2015: Interannual coupling between summertime surface temperature and precipitation over land: Processes and implications for climate change. J. Climate, 28, 13081328, doi:10.1175/JCLI-D-14-00324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), Model description—Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 595640, doi:10.5194/gmdd-4-595-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bisselink, B., E. van Meijgaard, A. J. Dolman, and R. A. M. de Jeu, 2011: Initializing a regional climate model with satellite-derived soil moisture. J. Geophys. Res., 116, D02121, doi:10.1029/2010JD014534.

    • Search Google Scholar
    • Export Citation
  • Blyth, E., J. Gash, A. Lloyd, M. Pryor, G. P. Weedon, and J. Shuttleworth, 2010: Evaluating the JULES land surface model energy fluxes using FLUXNET data. J. Hydrometeor., 11, 509519, doi:10.1175/2009JHM1183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boberg, F., and J. H. Christensen, 2012: Overestimation of Mediterranean summer temperature projections due to model deficiencies. Nat. Climate Change, 2, 433436, doi:10.1038/nclimate1454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boé, J., and L. Terray, 2008: Uncertainties in summer evapotranspiration changes over Europe and implications for regional climate change. Geophys. Res. Lett., 35, L05702, doi:10.1029/2007GL032417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boé, J., and L. Terray, 2014: Land–sea contrast, soil–atmosphere and cloud–temperature interactions: Interplays and roles in future summer European climate change. Climate Dyn., 42, 683699, doi:10.1007/s00382-013-1868-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, R. H., and A. T. Corey, 1964: Hydraulic properties of porous media. Colorado State University Hydrology Paper 3, 27 pp. [Available online at https://dspace.library.colostate.edu/bitstream/handle/10217/61288/HydrologyPapers_n3.pdf?sequence=1.]

  • Brutsaert, W., 2014: Daily evaporation from drying soil: Universal parameterization with similarity. Water Resour. Res., 50, 32063215, doi:10.1002/2013WR014872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and F. Boberg, 2012: Temperature dependent climate projection deficiencies in CMIP5 models. Geophys. Res. Lett., 39, L24705, doi:10.1029/2012GL053650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., F. Boberg, O. B. Christensen, and P. Lucas-Picher, 2008: On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett., 35, L20709, doi:10.1029/2008GL035694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, D. B., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), Model description—Part 2: Carbon fluxes and vegetation. Geosci. Model Dev., 4, 641688, doi:10.5194/gmdd-4-641-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., X. Gao, M. Zhao, Z. Guo, T. Oki, and N. Hanasaki, 2006: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 13811397, doi:10.1175/BAMS-87-10-1381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Y. Jin, B. Singh, and X. Yan, 2013: Trends in land–atmosphere interactions from CMIP5 simulations. J. Hydrometeor., 14, 829849, doi:10.1175/JHM-D-12-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferranti, L., and P. Viterbo, 2006: The European summer of 2003: Sensitivity to soil water initial conditions. J. Climate, 19, 36593680, doi:10.1175/JCLI3810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feudale, L., and J. Shukla, 2007: Role of Mediterranean SST in enhancing the European heat wave of summer 2003. Geophys. Res. Lett., 34, L03811, doi:10.1029/2006GL027991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feudale, L., and J. Shukla, 2011: Influence of sea surface temperature on the European heat wave of 2003 summer. Part II: A modeling study. Climate Dyn., 36, 17051715, doi:10.1007/s00382-010-0789-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, D. Lüthi, and C. Schär, 2007a: Contribution of land–atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett., 34, L06707, doi:10.1029/2006GL027992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, 2007b: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 50815099, doi:10.1175/JCLI4288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., J. Rajczak, and C. Schär, 2012: Changes in European summer temperature variability revisited. Geophys. Res. Lett., 39, L19702, doi:10.1029/2012GL052730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folwell, S., P. P. Harris, and C. M. Taylor, 2016: Large-scale surface responses during European dry spells diagnosed from land surface temperature. J. Hydrometeor., 17, 975993, doi:10.1175/JHM-D-15-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallego-Elvira, B., C. M. Taylor, P. P. Harris, D. Ghent, K. L. Veal, and S. S. Folwell, 2016: Global observational diagnosis of soil moisture control on the land surface energy balance. Geophys. Res. Lett., 43, 26232631, doi:10.1002/2016GL068178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., N. Hofstra, A. M. G. K. Tank, E. J. Klok, P. D. Jones, and M. New, 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119, doi:10.1029/2008JD010201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschi, M., and Coauthors, 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci., 4, 1721, doi:10.1038/ngeo1032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaeger, E. B., and S. I. Seneviratne, 2011: Impact of soil moisture–atmosphere coupling on European climate extremes and trends in a regional climate model. Climate Dyn., 36, 19191939, doi:10.1007/s00382-010-0780-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, C., and Coauthors, 2011: Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res., 116, D02102, doi:10.1029/2010JD014545.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, doi:10.1038/nature09396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krueger, O., G. C. Hegerl, and S. F. B. Tett, 2015: Evaluation of mechanisms of hot and cold days in climate models over central Europe. Environ. Res. Lett., 10, 014002, doi:10.1088/1748-9326/10/1/014002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., P. E. Thornton, K. W. Oleson, and G. B. Bonan, 2007: The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land–atmosphere interaction. J. Hydrometeor., 8, 862880, doi:10.1175/JHM596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhotka, O., and J. Kyselý, 2015: Spatial and temporal characteristics of heat waves over central Europe in an ensemble of regional climate model simulations. Climate Dyn., 45, 23512366, doi:10.1007/s00382-015-2475-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, R., E. L. Davin, and S. I. Seneviratne, 2012: Modeling land–climate coupling in Europe: Impact of land surface representation on climate variability and extremes. J. Geophys. Res., 117, D20109, doi:10.1029/2012JD017755.

    • Search Google Scholar
    • Export Citation
  • Lorenz, R., E. L. Davin, D. M. Lawrence, R. Stöckli, and S. I. Seneviratne, 2013: How important is vegetation phenology for European climate and heat waves? J. Climate, 26, 10 07710 100, doi:10.1175/JCLI-D-13-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., T. R. H. Holmes, R. A. M. De Jeu, J. H. Gash, A. G. C. A. Meesters, and A. J. Dolman, 2011: Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci., 15, 453469, doi:10.5194/hess-15-453-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., M. J. den Berg, A. J. Teuling, and R. A. M. Jeu, 2012: Soil moisture–temperature coupling: A multiscale observational analysis. Geophys. Res. Lett., 39, L21707, doi:10.1029/2012GL053703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., A. J. Teuling, C. C. van Heerwaarden, and J. Vilà-Guerau de Arellano, 2014: Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci., 7, 345349, doi:10.1038/ngeo2141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, B., and S. I. Seneviratne, 2012: Hot days induced by precipitation deficits at the global scale. Proc. Natl. Acad. Sci. USA, 109, 12 39812 403, doi:10.1073/pnas.1204330109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2011: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett., 38, L06402, doi:10.1029/2010GL046230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2013: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrol. Earth Syst. Sci., 17, 37073720, doi:10.5194/hess-17-3707-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peel, M. C., B. L. Finlayson, and T. A. McMahon, 2007: Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644, doi:10.5194/hess-11-1633-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quesada, B., R. Vautard, P. Yiou, M. Hirschi, and S. I. Seneviratne, 2012: Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nat. Climate Change, 2, 736741, doi:10.1038/nclimate1536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., and R. G. Jones, 2006: Causes and uncertainty of future summer drying over Europe. Climate Dyn., 27, 281299, doi:10.1007/s00382-006-0125-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., P. L. Vidale, D. Luthi, C. Frei, C. Häberli, M. A. Liniger, and C. Appenzeller, 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332336, doi:10.1038/nature02300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205209, doi:10.1038/nature05095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2013: Impact of soil moisture–climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Geophys. Res. Lett., 40, 52125217, doi:10.1002/grl.50956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheng, J., and F. Zwiers, 1998: An improved scheme for time-dependent boundary conditions in atmospheric general circulation models. Climate Dyn., 14, 609613, doi:10.1007/s003820050244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stéfanon, M., P. Drobinski, F. D’Andrea, and N. de Noblet-Ducoudré, 2012: Effects of interactive vegetation phenology on the 2003 summer heat waves. J. Geophys. Res., 117, D24103, doi:10.1029/2012JD018187.

    • Search Google Scholar
    • Export Citation
  • Stegehuis, A. I., R. Vautard, P. Ciais, A. J. Teuling, M. Jung, and P. Yiou, 2013: Summer temperatures in Europe and land heat fluxes in observation-based data and regional climate model simulations. Climate Dyn., 41, 455477, doi:10.1007/s00382-012-1559-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, S. C., and D. M. Lawrence, 2014: Assessing a dry surface layer–based soil resistance parameterization for the Community Land Model using GRACE and FLUXNET-MTE data. J. Geophys. Res. Atmos., 119, 10 29910 312, doi:10.1002/2014JD022314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teuling, A. J., S. I. Seneviratne, C. Williams, and P. A. Troch, 2006: Observed timescales of evapotranspiration response to soil moisture. Geophys. Res. Lett., 33, L23403, doi:10.1029/2006GL028178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teuling, A. J., and Coauthors, 2009: A regional perspective on trends in continental evaporation. Geophys. Res. Lett., 36, L02404, doi:10.1029/2008GL036584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trigo, I. F., I. T. Monteiro, F. Olesen, and E. Kabsch, 2008: An assessment of remotely sensed land surface temperature. J. Geophys. Res., 113, D17108, doi:10.1029/2008JD010035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van den Hoof, C., P. L. Vidale, A. Verhoef, and C. Vincke, 2013: Improved evaporative flux partitioning and carbon flux in the land surface model JULES: Impact on the simulation of land surface processes in temperate Europe. Agric. For. Meteor., 181, 108124, doi:10.1016/j.agrformet.2013.07.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2007: Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophys. Res. Lett., 34, L07711, doi:10.1029/2006GL028001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2013: The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Climate Dyn., 41, 25552575, doi:10.1007/s00382-013-1714-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D. N., and Coauthors, 2014: The Met Office Unified Model Global Atmosphere 4.0 and JULES Global Land 4.0 configurations. Geosci. Model Dev., 7, 361386, doi:10.5194/gmd-7-361-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weedon, G. P., G. Balsamo, N. Bellouin, S. Gomes, M. J. Best, and P. Viterbo, 2014: The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res., 50, 75057514, doi:10.1002/2014WR015638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., F. J. Doblas-Reyes, T. Jung, and T. N. Palmer, 2011: On the predictability of the extreme summer 2003 over Europe. Geophys. Res. Lett., 38, L05704, doi:10.1029/2010GL046455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zampieri, M., F. D’Andrea, R. Vautard, P. Ciais, N. de Noblet-Ducoudré, and P. Yiou, 2009: Hot European summers and the role of soil moisture in the propagation of Mediterranean drought. J. Climate, 22, 47474758, doi:10.1175/2009JCLI2568.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 265 156 5
PDF Downloads 194 119 4

An Evaluation of Modeled Evaporation Regimes in Europe Using Observed Dry Spell Land Surface Temperature

View More View Less
  • 1 Centre for Ecology and Hydrology, and National Centre for Earth Observation, Wallingford, United Kingdom
  • | 2 Centre for Ecology and Hydrology, Wallingford, United Kingdom
  • | 3 Met Office, Exeter, United Kingdom
  • | 4 Centre for Ecology and Hydrology, and National Centre for Earth Observation, Wallingford, United Kingdom
Restricted access

Abstract

Soil moisture availability exerts control over the land surface energy partition in parts of Europe. However, determining the strength and variability of this control is impeded by the lack of reliable evaporation observations at the continental scale. This makes it difficult to refine the broad range of soil moisture–evaporation behaviors across global climate models (GCMs). Previous studies show that satellite observations of land surface temperature (LST) during rain-free dry spells can be used to diagnose evaporation regimes at the GCM gridbox scale. This relative warming rate (RWR) diagnostic quantifies the increase in dry spell LST relative to air temperature and is used here to evaluate a land surface model (JULES) both offline and coupled to a GCM (HadGEM3-A). It is shown that RWR can be calculated using outputs from an atmospheric GCM provided the satellite clear-sky sampling bias is incorporated. Both offline JULES and HadGEM3-A reproduce the observed seasonal and regional RWR variations, but with weak springtime RWRs in central Europe. This coincides with sustained bare soil evaporation (Ebs) during dry spells, reflecting previous site-level JULES studies in Europe. To assess whether RWR can discriminate between surface descriptions, the bare soil surface conductance and the vegetation root profile are revised to limit Ebs. This increases RWR by increasing the occurrence of soil moisture–limited dry spells, yielding more realistic springtime RWRs as a function of antecedent precipitation but poorer relationships in summer. This study demonstrates the potential for using satellite LST to assess evaporation regimes in climate models.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: P. P. Harris, ppha@ceh.ac.uk

Abstract

Soil moisture availability exerts control over the land surface energy partition in parts of Europe. However, determining the strength and variability of this control is impeded by the lack of reliable evaporation observations at the continental scale. This makes it difficult to refine the broad range of soil moisture–evaporation behaviors across global climate models (GCMs). Previous studies show that satellite observations of land surface temperature (LST) during rain-free dry spells can be used to diagnose evaporation regimes at the GCM gridbox scale. This relative warming rate (RWR) diagnostic quantifies the increase in dry spell LST relative to air temperature and is used here to evaluate a land surface model (JULES) both offline and coupled to a GCM (HadGEM3-A). It is shown that RWR can be calculated using outputs from an atmospheric GCM provided the satellite clear-sky sampling bias is incorporated. Both offline JULES and HadGEM3-A reproduce the observed seasonal and regional RWR variations, but with weak springtime RWRs in central Europe. This coincides with sustained bare soil evaporation (Ebs) during dry spells, reflecting previous site-level JULES studies in Europe. To assess whether RWR can discriminate between surface descriptions, the bare soil surface conductance and the vegetation root profile are revised to limit Ebs. This increases RWR by increasing the occurrence of soil moisture–limited dry spells, yielding more realistic springtime RWRs as a function of antecedent precipitation but poorer relationships in summer. This study demonstrates the potential for using satellite LST to assess evaporation regimes in climate models.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: P. P. Harris, ppha@ceh.ac.uk
Save