• Bélair, S., Mailhot J. , Strapp J. W. , and MacPherson J. I. , 1999: An examination of local versus nonlocal aspects of a TKE-based boundary layer scheme in clear convective conditions. J. Appl. Meteor., 38, 14991518, doi:10.1175/1520-0450(1999)038<1499:AEOLVN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., Crevier L. P. , Mailhot J. , and Bilodeauye B. , 2003a: Operational implementation of the ISBA land surface scheme n the Canadian Regional Weather Forecast Model. Part I: Warm season results. J. Hydrometeor., 4, 352370, doi:10.1175/1525-7541(2003)4<352:OIOTIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., Brown R. , Mailhot J. , Bilodeau B. , and Crevier L. P. , 2003b: Operational implementation of the ISBA land surface scheme in the Canadian Regional Weather Forecast Model. Part II: Cold season results. J. Hydrometeor., 4, 371386, doi:10.1175/1525-7541(2003)4<371:OIOTIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., Mailhot J. , Girard C. , and Vaillancourt P. , 2005: Boundary layer and shallow cumulus cloud in a medium range forecast of a large scale weather system. Mon. Wea. Rev., 133, 19381960, doi:10.1175/MWR2958.1.

    • Search Google Scholar
    • Export Citation
  • Benoit, R., Côté J. , and Mailhot J. , 1989: Inclusion of TKE boundary-layer parameterization in the Canadian regional finite-element model. Mon. Wea. Rev., 117, 17261750, doi:10.1175/1520-0493(1989)117<1726:IOATBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Ball J. H. , Beljaars A. C. M. , Miller M. J. , and Viterbo P. A. , 1996: The land surface–atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101, 72097225, doi:10.1029/95JD02135.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1992: Principles of Kinematics and Dynamics. Vol. 1, Synoptic-Dynamic Meteorology in Midlatitudes, Oxford University Press, 431 pp.

  • Bontemps, S., Defourney P. , Bogaert E. V. , Arino O. , Kalogirou V. , and Perez J. R. , 2011: GLOBCOVER 2009: Product description and validation report. Université catholique de Louvain and ESA, 53 pp. [Available online at http://due.esrin.esa.int/files/GLOBCOVER2009_Validation_Report_2.2.pdf.]

  • Brooks, H. E., Lee J. W. , and Craven J. P. , 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68, 7394, doi:10.1016/S0169-8095(03)00045-0.

    • Search Google Scholar
    • Export Citation
  • Callado, A., and Pascual R. , 2005: Diagnosis and modelling of a summer convective storm over Mediterranean Pyrenees. Adv. Geosci., 2, 273277, doi:10.5194/adgeo-2-273-2005.

    • Search Google Scholar
    • Export Citation
  • Capehart, W. J., Stamm J. , and Norton P. , 2011: Representing Great Plains prairie wetland feedbacks in WRF. 12th Annual WRF User’s Workshop, Boulder, CO, NCAR, P75. [Available online at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2011/WorkshopPapers.php.]

  • Carrera, M. L., Bélair S. , Fortin V. , Bilodeau B. , Charpentier D. , and Doré I. , 2010: Evaluation of snowpack simulations over the Canadian Rockies with an experimental hydrometeorological modeling system. J. Hydrometeor., 11, 11231140, doi:10.1175/2010JHM1274.1.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., Bonan G. B. , and Levis S. , 2006: Soil moisture feedbacks to precipitation in southern Africa. J. Climate, 19, 41984206, doi:10.1175/JCLI3856.1.

    • Search Google Scholar
    • Export Citation
  • Covich, A. P., and Coauthors, 1997: Potential effects of climate change on aquatic ecosystems of the Great Plains of North America. Hydrol. Processes, 11, 9931021, doi:10.1002/(SICI)1099-1085(19970630)11:8<993::AID-HYP515>3.0.CO;2-N.

    • Search Google Scholar
    • Export Citation
  • Davies, H. C., 2015: The quasigeostrophic omega equation: Reappraisal, refinements, and relevance. Mon. Wea. Rev., 143, 325, doi:10.1175/MWR-D-14-00098.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dumanski, S., Pomeroy J. W. , and Westbrook C. J. , 2015: Hydrological regime changes in a Canadian Prairie basin. Hydrol. Processes, 29, 38933904, doi:10.1002/hyp.10567.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and Snellman L. E. , 1987: The diagnosis of synoptic-scale vertical motion in an operational environment. Wea. Forecasting, 2, 1731, doi:10.1175/1520-0434(1987)002<0017:TDOSSV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1998: A soil moisture–rainfall feedback mechanism 1: Theory and observations. Water Resour. Res., 34, 765776, doi:10.1029/97WR03499.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., Rodriquez-Iturbe I. , and Bras R. L. , 1992: Variability in large-scale water balance with land surface–atmosphere interaction. J. Climate, 5, 798813, doi:10.1175/1520-0442(1992)005<0798:VILSWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fang, X., and Pomeroy J. W. , 2008: Drought impacts on Canadian Prairie wetland snow hydrology. Hydrol. Processes, 22, 28582873, doi:10.1002/hyp.7074.

    • Search Google Scholar
    • Export Citation
  • Fang, X., Minke A. , Pomeroy J. , Brown T. , Westbrook C. , Guo X. , and Guangul S. , 2007: A review of Canadian Prairie Hydrology: Principles, modelling and response to land use and drainage change. Center of Hydrology Rep. 2, Centre of Hydrology, University of Saskatchewan, 35 pp. [Available online at http://www.usask.ca/hydrology/reports/CHRpt02_Prairie-Hydrology-Review_Oct07.pdf.]

  • Findell, K. L., and Eltahir E. A. B. , 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, doi:10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and Eltahir E. A. B. , 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570583, doi:10.1175/1525-7541(2003)004<0570:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gray, D. M., and Landine P. G. , 1988: An energy-budget snowmelt model for the Canadian Prairies. Can. J. Earth Sci., 25, 12921303, doi:10.1139/e88-124.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., Brockhaus P. , Bretherton C. S. , and Schär C. , 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020, doi:10.1175/2009JCLI2604.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, W. C., Millet B. V. , Gilmanov T. , Voldseth R. A. , Guntenspergen G. R. , and Naugle D. E. , 2005: Vulnerability of northern prairie wetlands to climate change. BioScience, 55, 863872, doi:10.1641/0006-3568(2005)055[0863:VONPWT]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kundzewicz, Z. W., and Coauthors, 2007: Freshwater resources and their management. Climate Change 2007: Impacts, Adaptation and Vulnerability, M. L. Parry et al., Eds., Cambridge University Press, 173–210.

  • LaBaugh, J. W., Winter T. C. , and Rosenberry D. O. , 1998: Hydrologic functions of prairie wetlands. Great Plains Res., 8, 17–37. [Available online at http://digitalcommons.unl.edu/greatplainsresearch/361/.]

  • Li, J., and Barker H. W. , 2005: A radiation algorithm with correlated-k distribution. Part I: Local thermal equilibrium. J. Atmos. Sci., 62, 286309, doi:10.1175/JAS-3396.1.

    • Search Google Scholar
    • Export Citation
  • Mailhot, J., and Coauthors, 2006: The 15-km version of the Canadian regional forecast system. Atmos.–Ocean, 44, 133149, doi:10.3137/ao.440202.

    • Search Google Scholar
    • Export Citation
  • Mailhot, J., and Coauthors, 2010: Environment Canada’s experimental numerical weather prediction systems for the 2010 Vancouver Winter Olympic and Paralympic Games. Bull. Amer. Meteor. Soc., 91, 10731085, doi:10.1175/2010BAMS2913.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., Straka J. M. , and Rasmussen E. N. , 2002: Direct surface thermodynamic observations within rear flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, doi:10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • MEA, 2005: Ecosystem and human well-being: Wetlands and water synthesis. World Resources Institute, 80 pp. [Available online at http://www.millenniumassessment.org/documents/document.358.aspx.pdf.]

  • Milbrandt, J. A., and Yau M. K. , 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, doi:10.1175/JAS3534.1.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Planton S. , 1989: A simple parameterization of land-surface processes for models. Mon. Wea. Rev., 117, 536549, doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., de Boer D. , and Martz L. W. , 2005: Hydrology and water resources of Saskatchewan. Centre for Hydrology Rep. 1, University of Saskatchewan, 25 pp. [Available online on at http://www.usask.ca/hydrology/reports/CHRpt01_Hydrology-Water-Resources-Sask_Feb05.pdf.]

  • Pomeroy, J. W., Fang X. , Westbrook C. , Minke A. , Guo X. , and Brown T. , 2010: Prairie Hydrological Model Study: Final report. Centre for Hydrology Rep. 7, University of Saskatchewan, 126 pp. [Available online at http://www.usask.ca/hydrology/reports/CHRpt07_PHMS-Final-Report_Jan10.pdf.]

  • Raddatz, R. L., and Hanesiak J. M. , 2008: Significant summer rainfall in the Canadian Prairie Provinces: Modes and mechanisms 2000–2004. Int. J. Climatol., 28, 16071613, doi:10.1002/joc.1670.

    • Search Google Scholar
    • Export Citation
  • Shook, K., and Pomeroy J. , 2012: Changes in the hydrological character of rainfall on the Canadian Prairies. Hydrol. Processes, 26, 17521766, doi:10.1002/hyp.9383.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Taylor, C. M., 2015: Detecting soil moisture impacts on convective initiation in Europe. Geophys. Res. Lett., 42, 46314638, doi:10.1002/2015GL064030.

    • Search Google Scholar
    • Export Citation
  • van der Kamp, G., and Hayashi M. , 2009: Groundwater–wetland ecosystem interaction in the semiarid glaciated plains of North America. Hydrogeol. J., 17, 203–214, doi:10.1007/s10040-008-0367-1.

    • Search Google Scholar
    • Export Citation
  • van der Kamp, G., Hayashi M. , and Gallen D. , 2003: Comparing the hydrology of grassed and cultivated catchments in the semi-arid Canadian Prairies. Hydrol. Processes, 17, 559575, doi:10.1002/hyp.1157.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 97 61 6
PDF Downloads 50 32 2

Influence of Open Water Bodies on the Modeling of Summertime Convection over the Canadian Prairies

View More View Less
  • 1 Meteorological Research Division, Environment and Climate Change Canada, Dorval, Quebec, Canada
Restricted access

Abstract

There are numerous water features on the Canadian landscapes that are not monitored. Specifically, there are water bodies over the prairies and Canadian shield regions of North America that are ephemeral in nature and could have a significant influence on convective storm generation and local weather patterns through turbulent exchanges of sensible and latent heat between the land and the atmosphere. In this study a series of numerical experiments is performed with Environment and Climate Change Canada’s Global Environmental Multiscale (GEM) model at 2.5-km grid spacing to examine the sensitivity of the atmospheric boundary layer and the resulting precipitation to the presence of open water bodies. Operationally, the land–water fraction in GEM is specified by means of static geophysical databases that do not change with time. Uncertainty is introduced in this study into this land–water fraction and the sensitivity of the resulting precipitation is quantified for a convective precipitation event occurring over the Canadian Prairies in the summer of 2014. The results indicate that with an increase in open water bodies, accumulated precipitation, peak precipitation amounts, and intensities decrease. Moreover, shifts are seen in times of peak for both precipitation amounts and intensities, in the order of increasing wetness. Additionally, with an increase in open water bodies, convective available potential energy decreases and convective inhibition increases, indicating suppression of forcing for convective precipitation.

Denotes Open Access content.

Corresponding author: Marco Carrera, marco.carrera@ec.gc.ca

Abstract

There are numerous water features on the Canadian landscapes that are not monitored. Specifically, there are water bodies over the prairies and Canadian shield regions of North America that are ephemeral in nature and could have a significant influence on convective storm generation and local weather patterns through turbulent exchanges of sensible and latent heat between the land and the atmosphere. In this study a series of numerical experiments is performed with Environment and Climate Change Canada’s Global Environmental Multiscale (GEM) model at 2.5-km grid spacing to examine the sensitivity of the atmospheric boundary layer and the resulting precipitation to the presence of open water bodies. Operationally, the land–water fraction in GEM is specified by means of static geophysical databases that do not change with time. Uncertainty is introduced in this study into this land–water fraction and the sensitivity of the resulting precipitation is quantified for a convective precipitation event occurring over the Canadian Prairies in the summer of 2014. The results indicate that with an increase in open water bodies, accumulated precipitation, peak precipitation amounts, and intensities decrease. Moreover, shifts are seen in times of peak for both precipitation amounts and intensities, in the order of increasing wetness. Additionally, with an increase in open water bodies, convective available potential energy decreases and convective inhibition increases, indicating suppression of forcing for convective precipitation.

Denotes Open Access content.

Corresponding author: Marco Carrera, marco.carrera@ec.gc.ca
Save