• Bagley, J. E., A. R. Desai, P. A. Dirmeyer, and J. A. Foley, 2012: Effects of land cover change on moisture availability and potential crop yield in the world’s breadbaskets. Environ. Res. Lett., 7, 014009, doi:10.1088/1748-9326/7/1/014009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baidya Roy, S., and R. Avissar, 2002: Impact of land use/land cover change on regional hydrometeorology in Amazonia. J. Geophys. Res., 107, 8037, doi:10.1029/2000JD000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butt, N., P. A. de Oliveira, and M. H. Costa, 2011: Evidence that deforestation affects the onset of the rainy season in Rondonia, Brazil. J. Geophys. Res., 116, D11120, doi:10.1029/2010JD015174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., A. E. Silva, C. Jones, B. Liebmann, P. L. S Dias, and H. R. Rocha, 2010: Moisture transport and intraseasonal variability in the South America monsoon system. Climate Dyn., 36, 18651880, doi:10.1007/s00382-010-0806-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chagnon, F. J. F., and R. L. Bras, 2005: Contemporary climate change in the Amazon. Geophys. Res. Lett., 32, L13703, doi:10.1029/2005GL022722.

  • Coe, M. T., M. H. Costa, and B. S. Soares-Filho, 2009: The influence of historical and potential future deforestation on the stream flow of the Amazon River—Land surface processes and atmospheric feedbacks. J. Hydrol., 369, 165174, doi:10.1016/j.jhydrol.2009.02.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, M. H., 2005: Large-scale hydrological impacts of tropical forest conversion. Forests, Water and People in the Humid Tropics, M. Bonell and L. A. Bruijnzeel, Eds. Cambridge University Press, 590–597.

    • Crossref
    • Export Citation
  • Costa, M. H., and J. A. Foley, 1999: Trends in the hydrologic cycle of the Amazon basin. J. Geophys. Res., 104, 14 18914 198, doi:10.1029/1998JD200126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, M. H., and J. A. Foley, 2000: Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. J. Climate, 13, 1834, doi:10.1175/1520-0442(2000)013<0018:CEODAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, M. H., and G. F. Pires, 2010: Effects of Amazon and central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int. J. Climatol., 30, 19701979, doi:10.1002/joc.2048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, M. H., S. N. M. Yanagi, P. J. Oliveira, A. Ribeiro, and E. J. P. Rocha, 2007: Climate change in Amazonia caused by soybean cropland expansion, as compared to caused by pastureland expansion. Geophys. Res. Lett., 34, L07706, doi:10.1029/2007GL029271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, M. H., M. C. Biajoli, L. Sanches, A. C. M. Malhado, L. R. Hutyra, H. R. da Rocha, R. G. Aguiar, and A. C. deAraújo, 2010: Atmospheric versus vegetation controls of Amazonian tropical rain forest evapotranspiration: Are the wet and seasonally dry rain forests any different? J. Geophys. Res., 115, G04021, doi:10.1029/2009JG001179.

    • Search Google Scholar
    • Export Citation
  • da Silva, A. E., and L. M. V. de Carvalho, 2007: Large-scale index for South America monsoon. Atmos. Sci. Lett., 8, 5157, doi:10.1002/asl.150.

  • De Almeida, R. A. F., P. Nobre, R. J. Haarsma, and E. J. D. Campos, 2007: Negative ocean–atmosphere feedback in the South Atlantic convergence zone. Geophys. Res. Lett., 34, L18809, doi:10.1029/2007GL030401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delire, C., J. A. Foley, and S. Thompson, 2003: Evaluating the carbon cycle of a coupled atmosphere–biosphere model. Global Biogeochem. Cycles, 17, 1012, doi:10.1029/2002GB001870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias, L. C. P., F. M. Pimenta, A. B. Santos, M. H. Costa, and R. J. Ladle, 2016: Patterns of land use, extensification and intensification of Brazilian agriculture. Global Change Biol., 22, 28872903, doi:10.1111/gcb.13314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and K. L. Brubaker, 2007: Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. J. Hydrometeor., 8, 2037, doi:10.1175/JHM557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drumond, A., J. Marengo, T. Ambrizzi, R. Nieto, L. Moreira, and L. Gimeno, 2014: The role of the Amazon basin moisture in the atmospheric branch of the hydrological cycle: A Lagrangian analysis. Hydrol. Earth Syst. Sci., 18, 25772598, doi:10.5194/hess-18-2577-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durán-Quesada, A. M., M. Reboita, and L. Gimeno, 2012: Precipitation in tropical America and the associated sources of moisture: A short review. Hydrol. Sci. J., 57, 612624, doi:10.1080/02626667.2012.673723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1996: Role of vegetation in sustaining large-scale atmospheric circulations in the tropics. J. Geophys. Res., 101, 42554268, doi:10.1029/95JD03632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., and R. L. Bras, 1994: Precipitation recycling in the Amazon basin. Quart. J. Roy. Meteor. Soc., 120, 861880, doi:10.1002/qj.49712051806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., and R. L. Bras, 1996: Precipitation recycling. Rev. Geophys., 34, 367378, doi:10.1029/96RG01927.

  • Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, D. Sitch, and A. Haxeltine, 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycles, 10, 603628, doi:10.1029/96GB02692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foley, J. A., and Coauthors, 2005: Review global consequences of land use. Science, 309, 570575, doi:10.1126/science.1111772.

  • Gimeno, L., A. Drumond, R. Nieto, R. M. Trigo, and A. Stohl, 2010: On the origin of continental precipitation. Geophys. Res. Lett., 37, L13804, doi:10.1029/2010GL043712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and Coauthors, 2012: Oceanic and terrestrial sources of continental precipitation. Rev. Geophys., 50, RG4003, doi:10.1029/2012RG000389.

  • Goessling, H., and C. H. Reick, 2013: On the “well-mixed” assumption and numerical 2-D tracing of atmospheric moisture. Atmos. Chem. Phys., 13, 55675585, doi:10.5194/acp-13-5567-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., andCoauthors, 2013: High-resolution global maps of 21st-century forest cover change. Science, 342, 850853, doi:10.1126/science.1244693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., K. McGuffie, and H. Zhang, 2002: Stable isotopes as validation tools for global climate model predictions of the impact of Amazonian deforestation. J. Climate, 15, 26642677, doi:10.1175/1520-0442(2002)015<2664:SIAVTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imbuzeiro, H. M. A., 2005: Calibration of the IBIS model in the Amazonian forest using multiple sites (in Portuguese with English abstract). M.S. thesis, Dept. of Agricultural Engineering, Federal University of Viçosa, Viçosa, 67 pp.

  • Joetzjer E., H. Douville, C. Delire, and P. Ciais, 2013: Present-day and future Amazonian precipitation in Global climate models: CMIP5 vs CMIP3. Climate Dyn., 41, 29212936, doi:10.1007/s00382-012-1644-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keys, P. W., L. Wang-Erlandsson, and L. J. Gordon, 2016: Revealing invisible water: Moisture recycling as an ecosystem service. PLoS One, 11, e0151993, doi:10.1371/journal.pone.0151993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11, 11311149, doi:10.1175/1520-0442(1998)011<1131:TNCFAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladle, R. J., A. C. M. Malhado, P. A. Tood, and A. C. M. Malhado, 2010: Perceptions of Amazonian deforestation in the British and Brazilian media. Acta Amazon., 40, 319324, doi:10.1590/S0044-59672010000200010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapola, D. M., and Coauthors, 2013: Pervasive transition of the Brazilian land-use system. Nat. Climate Change, 4, 2735, doi:10.1038/nclimate2056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D., and K. Vandecar, 2015: Effects of tropical deforestation on climate and agriculture. Nat. Climate Change, 5, 2736, doi:10.1038/nclimate2430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., and Coauthors, 2012: Recent developments on the South American monsoon system. Int. J. Climatol., 32, 121, doi:10.1002/joc.2254.

  • Martinez, J. A., and F. Dominguez, 2014: Sources of atmospheric moisture for the La Plata River basin. J. Climate, 27, 67376753, doi:10.1175/JCLI-D-14-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Misra, V., 2008: Coupled air, sea, and land interactions of the South American monsoon. J. Climate, 21, 63896403, doi:10.1175/2008JCLI2497.1.

  • Nobre, P., M. Malagutti, D. F. Urbano, R. A. F. de Ameida, and E. Giarolla, 2009: Amazon deforestation and climate change in a coupled model simulation. J. Climate, 22, 56865697, doi:10.1175/2009JCLI2757.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliveira, L. J. C., M. H. Costa, B. S. Soares-Filho, and M. T. Coe, 2013: Large-scale expansion of agriculture in Amazonia may be a no-win scenario. Environ. Res. Lett ., 8, 024021, doi:10.1088/1748-9326/8/2/024021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paegle, J. N., and K. C. Mo, 2002: Linkages between summer rainfall variability over South America and sea surface temperature anomalies. J. Climate, 15, 13891407, doi:10.1175/1520-0442(2002)015<1389:LBSRVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pires, G. F., and M. H. Costa, 2013: Deforestation causes different subregional effects on the Amazon bioclimatic equilibrium. Geophys. Res. Lett., 40, 36183623, doi:10.1002/grl.50570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pires, G. F., G. M. Abrahão, L. M. Brumatti, L. J. C. Oliveira, M. H. Costa, S. Liddicoat, E. Kato, and R. J. Ladle, 2016: Increased climate risk in Brazilian double cropping agriculture systems: Implications for land use in northern Brazil. Agric. For. Meteor., 228–229, 286298, doi:10.1016/j.agrformet.2016.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, I., C. R. Mechoso, and A. W. Robertson, 2008: What determines the position and intensity of the South Atlantic anticyclone in austral winter?—An AGCM study. J. Climate, 21, 214229, doi:10.1175/2007JCLI1802.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampaio, G., C. Nobre, M. H. Costa, P. Satyamurty, B. S. Soares-Filho, and M. Cardoso, 2007: Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys. Res. Lett., 34, L17709, doi:10.1029/2007GL030612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satyamurty, P., C. P. W. Da Costa, and A. O. Manzi, 2013: Moisture source for the Amazon basin: A study of contrasting years. Theor. Appl. Climatol., 111, 195209, doi:10.1007/s00704-012-0637-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva, V. B. S., and V. E. Kousky, 2012: The South American Monsoon System: Climatology and variability. Modern Climatology, S.-Y. Wang and R. R. Gillies, Eds., InTech, 123152, doi:10.5772/38565.

    • Search Google Scholar
    • Export Citation
  • Soares-Filho, B. S., and Coauthors, 2006: Modelling conservation in the Amazon basin. Nature, 440, 520523, doi:10.1038/nature04389.

  • Spracklen, D. V., and L. Garcia-Carreras, 2015: The impact of Amazonian deforestation on Amazon basin rainfall. Geophys. Res. Lett., 42, 95469552, doi:10.1002/2015GL066063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spracklen, D. V., S. R. Arnold, and C. M. Taylor, 2012: Observations of increased tropical rainfall preceded by air passage over forests. Nature, 489, 282285, doi:10.1038/nature11390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stickler, C. M., M. T. Coe, M. H. Costa, D. C. Nepstad, D. G. McGrath, L. C. P. Dias, H. O. Rodrigues, and B. S. Soares-Filho, 2013: Dependence of hydropower energy generation on forests in the Amazon basin at local and regional scales. Proc. Natl. Acad. Sci. USA, 110, 96019606, doi:10.1073/pnas.1215331110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohl, A., and P. A. James, 2004: Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe. J. Hydrometeor., 5, 656678, doi:10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohl, A., and P. A. James, 2005: Lagrangian analysis of the atmospheric branch of the global water cycle. Part II: Moisture transports between Earth’s ocean basins and river catchments. J. Hydrometeor., 6, 961984, doi:10.1175/JHM470.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, A. L., M. Longo, R. G. Knox, E. Lee, and P. R. Moorcroft, 2015: Future deforestation in the Amazon and consequences for South American climate. Agric. For. Meteor., 214–215, 1224, doi:10.1016/j.agrformet.2015.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., and H. H. G. Savenije, 2011: Length and time scales of atmospheric moisture recycling. Atmos. Chem. Phys., 11, 18531863, doi:10.5194/acp-11-1853-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., H. H. G. Savenije, B. Schaefli, and S. C. Steele-Dunne, 2010: Origin and fate of atmospheric moisture over continents. Water Resour. Res., 46, W09525, doi:10.1029/2010WR009127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vera, C., and Coauthors, 2006: Toward a unified view of the American monsoon systems. J. Climate, 19, 49775000, doi:10.1175/JCLI3896.1.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 466 263 12
PDF Downloads 306 181 10

Sources of Water Vapor to Economically Relevant Regions in Amazonia and the Effect of Deforestation

View More View Less
  • 1 Department of Agricultural Engineering, Federal University of Viçosa, Viçosa, Brazil
Restricted access

Abstract

The Amazon rain forest helps regulate the regional humid climate. Understanding the effects of Amazon deforestation is important to preserve not only the climate, but also economic activities that depend on it, in particular, agricultural productivity and hydropower generation. This study calculates the source of water vapor contributing to the precipitation on economically relevant regions in Amazonia according to different scenarios of deforestation. These regions include the state of Mato Grosso, which produces about 9% of the global soybean production, and the basins of the Xingu and Madeira, with infrastructure under construction that will be capable to generate 20% of the electrical energy produced in Brazil. The results show that changes in rainfall after deforestation are stronger in regions nearest to the ocean and indicate the importance of the continental water vapor source to the precipitation over southern Amazonia. In the two more continental regions (Madeira and Mato Grosso), decreases in the source of water vapor in one region were offset by increases in contributions from other continental regions, whereas in the Xingu basin, which is closer to the ocean, this mechanism did not occur. As a conclusion, the geographic location of the region is an important determinant of the resiliency of the regional climate to deforestation-induced regional climate change. The more continental the geographic location, the less climate changes after deforestation.

Additional affiliation: National Institute of Meteorology of Mozambique, Maputo, Mozambique.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gabrielle Ferreira Pires, gabrielle.pires@ufv.br

Abstract

The Amazon rain forest helps regulate the regional humid climate. Understanding the effects of Amazon deforestation is important to preserve not only the climate, but also economic activities that depend on it, in particular, agricultural productivity and hydropower generation. This study calculates the source of water vapor contributing to the precipitation on economically relevant regions in Amazonia according to different scenarios of deforestation. These regions include the state of Mato Grosso, which produces about 9% of the global soybean production, and the basins of the Xingu and Madeira, with infrastructure under construction that will be capable to generate 20% of the electrical energy produced in Brazil. The results show that changes in rainfall after deforestation are stronger in regions nearest to the ocean and indicate the importance of the continental water vapor source to the precipitation over southern Amazonia. In the two more continental regions (Madeira and Mato Grosso), decreases in the source of water vapor in one region were offset by increases in contributions from other continental regions, whereas in the Xingu basin, which is closer to the ocean, this mechanism did not occur. As a conclusion, the geographic location of the region is an important determinant of the resiliency of the regional climate to deforestation-induced regional climate change. The more continental the geographic location, the less climate changes after deforestation.

Additional affiliation: National Institute of Meteorology of Mozambique, Maputo, Mozambique.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gabrielle Ferreira Pires, gabrielle.pires@ufv.br
Save