• Antonescu, B., G. Vaughan, and D. M. Schultz, 2013: A five-year radar-based climatology of tropopause folds and deep convection over Wales, United Kingdom. Mon. Wea. Rev., 141, 16931707, doi:10.1175/MWR-D-12-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, A. I., S. L. Gray, D. J. Kirshbaum, N. M. Roberts, D. M. Schultz, and J. G. Fairman Jr., 2015: Synoptic versus orographic control on stationary convective banding. Quart. J. Roy. Meteor. Soc., 141, 11011113, doi:10.1002/qj.2409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, A. I., S. L. Gray, D. J. Kirshbaum, N. M. Roberts, D. M. Schultz, and J. G. Fairman Jr., 2016: The utility of convection-permitting ensembles for the prediction of stationary convective bands. Mon. Wea. Rev., 144, 10931114, doi:10.1175/MWR-D-15-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W. Nesbitt, 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric and lightning characteristics. Mon. Wea. Rev., 133, 543566, doi:10.1175/MWR-2876.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairman, J. G., Jr., D. M. Schultz, D. J. Kirshbaum, S. L. Gray, and A. I. Barrett, 2015: A radar-based rainfall climatology of Great Britain and Ireland. Weather, 70, 153158, doi:10.1002/wea.2486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairman, J. G., Jr., D. M. Schultz, D. J. Kirshbaum, S. L. Gray, and A. I. Barrett, 2016: Climatology of banded precipitation over the contiguous United States. Mon. Wea. Rev., 144, 45534568, doi:10.1175/MWR-D-16-0015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgiou, S., N. Gaussiat, and H. Lewis, 2011: Analysis of a scheme to dynamically model the orographic enhancement of precipitation in the UK. IAHS Publ., 351, 201206.

    • Search Google Scholar
    • Export Citation
  • Golding, B., P. Clark, and B. May, 2005: The Boscastle flood: Meteorological analysis of the conditions leading to flooding on 16 August 2004. Weather, 60, 230235, doi:10.1256/wea.71.05.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. L., R. W. Scovell, and M. Kitchen, 2009: High-resolution precipitation estimates for hydrological uses. Proc. Inst. Civ. Eng.: Water Manage., 162, 125135, doi:10.1680/wama.2009.162.2.125.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. L., K. Norman, C. Pierce, and N. Gaussiat, 2012: Radar products for hydrological applications in the UK. Proc. Inst. Civ. Eng.: Water Manage., 165, 89103, doi:10.1680/wama.2012.165.2.89.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., C. Liu, and E. J. Zipser, 2011: A TRMM-based tropical cyclone cloud and precipitation feature database. J. Appl. Meteor. Climatol., 50, 12551274, doi:10.1175/2011JAMC2662.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., F. Fabry, and Q. Cazenave, 2016: The Mississippi Valley convection minimum on summer afternoons: Observations and numerical simulations. Mon. Wea. Rev., 144, 263272, doi:10.1175/MWR-D-15-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitchen, M., and A. Illingworth, 2011: From observations to forecasts—Part 13: The UK weather radar network—Past, present and future. Weather, 66, 291297, doi:10.1002/wea.861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitchen, M., R. Brown, and A. G. Davies, 1994: Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Quart. J. Roy. Meteor. Soc., 120, 12311254, doi:10.1002/qj.49712051906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leary, C. A., and R. A. Houze Jr., 1979: Melting and evaporation of hydrometeors in precipitation from the anvil clouds of deep tropical convection. J. Atmos. Sci., 36, 669679, doi:10.1175/1520-0469(1979)036<0669:MAEOHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, H. W., and D. L. Harrison, 2007: Assessment of radar data quality in upland catchments. Meteor. Appl., 14, 441454, doi:10.1002/met.43.

  • Lewis, M. W., and S. L. Gray, 2010: Categorisation of synoptic environments associated with mesoscale convective systems over the UK. Atmos. Res., 97, 194213, doi:10.1016/j.atmosres.2010.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2013: Regional variation of morphology of organized convection in the tropics and subtropics. J. Geophys. Res. Atmos., 118, 453466, doi:10.1029/2012JD018409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, D. J. Cecil, S. W. Nesbitt, and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728, doi:10.1175/2008JAMC1890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, doi:10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. K. M. Palmer, 1948: The distributions of raindrops with size. J. Meteor., 5, 165166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., W. Hitschfeld, and K. L. S. Gunn, 1955: Advances in radar weather. Advances in Geophysics, Vol. 2, Academic Press, 1–56, doi:10.1016/S0065-2687(08)60310-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Met Office, 1997: Forecasters’ Reference Book. Met Office, 176 pp. [Available online at https://digital.nmla.metoffice.gov.uk/file/sdb%3AdigitalFile%7C103a272a-2f1e-4837-a954-b1a5b53ae84a/.]

  • Met Office, 2003: Met Office rain radar data from the NIMROD system. NCAS British Atmospheric Data Centre, accessed 4 January 2016. [Available online at http://catalogue.ceda.ac.uk/uuid/82adec1f896af6169112d09cc1174499.]

  • Met Office, 2009: Radar. National Meteorological Library and Archive Fact Sheet 15, 22 pp. [Available online at http://www.metoffice.gov.uk/learning/library/publications/factsheets.]

  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the Tropics using TRMM: Radar, ice scattering, and lighting observations. J. Climate, 13, 40874016, doi:10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721, doi:10.1175/MWR3200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J., G. Vaughan, and D. M. Schultz, 2013: Snowbands over the English Channel and Irish Sea during cold-air outbreaks. Quart. J. Roy. Meteor. Soc., 139, 17471761, doi:10.1002/qj.2079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rapp, A. D., A. G. Peterson, O. W. Frauenfeld, S. M. Quiring, and E. B. Roark, 2014: Climatology of storm characteristics in Costa Rica using the TRMM Precipitation Radar. J. Hydrometeor., 15, 26152633, doi:10.1175/JHM-D-13-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., M. M. Chaplin, M. D. Zuluaga, and R. A. Houze Jr., 2016: Contribution of extreme convective storms to rainfall in South America. J. Hydrometeor., 17, 353367, doi:10.1175/JHM-D-15-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M., R. Nieto-Ferreria, C. Zarzar, and B. Nelson, 2015: A seasonal and diurnal climatology of precipitation organization in the southeastern United States. Quart. J. Roy. Meteor. Soc., 141, 19381956, doi:10.1002/qj.2500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2017: The Global Precipitation Measurement (GPM) Mission for Science and Society. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00306.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smalley, M., and T. L’Ecuyer, 2015: A global assessment of the spatial distribution of precipitation occurrence. J. Appl. Meteor. Climatol., 54, 21792197, doi:10.1175/JAMC-D-15-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, R. A., D. J. Kirshbaum, R. S. Plant, and H. W. Lean, 2014: A ‘Boscastle-type’ quasi-stationary convective system over the UK southwest peninsula. Quart. J. Roy. Meteor. Soc., 140, 240257, doi:10.1002/qj.2124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., C. Czuchnicki, and C. Franzke, 2014: Twentieth century North Atlantic jet variability. Quart. J. Roy. Meteor. Soc., 140, 783791, doi:10.1002/qj.2197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., R. F. Adler, and N.-Y. Wang, 2014: Combining satellite infrared and lightning information to estimate warm-season convective and stratiform rainfall. J. Appl. Meteor. Climatol., 53, 180199, doi:10.1175/JAMC-D-13-069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., and S. A. Rutledge, 2015: Morphology, intensity, and rainfall production of MJO convection: Observations from DYNAMO shipborne radar and TRMM. J. Atmos. Sci., 72, 623640, doi:10.1175/JAS-D-14-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and S. W. Nesbitt, 2014: Statistical properties of precipitation as observed by the TRMM Precipitation Radar. Geophys. Res. Lett., 41, 56365643, doi:10.1002/2014GL060683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., C. Liu, D. J. Cecil, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, doi:10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 368 215 12
PDF Downloads 311 166 7

Climatology of Size, Shape, and Intensity of Precipitation Features over Great Britain and Ireland

View More View Less
  • 1 Centre for Atmospheric Science, School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom
  • | 2 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
  • | 3 Department of Meteorology, University of Reading, Reading, United Kingdom
  • | 4 Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Restricted access

Abstract

A climatology of precipitation features (or objects) from the Great Britain and Ireland radar-derived precipitation mosaic from 2006 to 2015 is constructed, with features defined as contiguous areas of nonzero precipitation rates. Over the 10 years, there are 54 811 747 nonunique precipitating features over 100 km2 in area, with a median precipitation feature area of 249 km2, median major axis length of 29.2 km, median aspect ratio of 2.0:1, median feature mean precipitation rate of 0.49 mm h−1, and median feature maximum precipitation rate of 2.4 mm h−1. Small-scale precipitating systems are most common, but larger systems exceeding 10 000 km2 contribute close to 70% of the annual precipitation across the study region. Precipitation feature characteristics are sensitive to changes in annual and diurnal environment, with feature intensities peaking during the afternoon in summer and the largest precipitation features occurring during winter. Precipitation intensities less than 5 mm h−1 comprise 97.3% of all precipitation occurrences and contribute 83.6% of the total precipitation over land. Banded precipitation features (defined as precipitation features with aspect ratio at least 3:1 and major axis length at least 100 km) comprise 3% of all precipitation features by occurrence, but contribute 23.7% of the total precipitation. Mesoscale banded features (defined as banded precipitation features with major axis length at least 100 km and total area not exceeding 10 000 km2) and mesoscale convective banded features (defined as banded precipitation features with at least 100 km2 of precipitation rates exceeding 10 mm h−1) are most prevalent in southwestern England, with mesoscale convective banded features contributing up to 2% of precipitation.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2017 American Meteorological Society.

Corresponding author: Dr. Jonathan G. Fairman, jonathan.fairman@manchester.ac.uk

Abstract

A climatology of precipitation features (or objects) from the Great Britain and Ireland radar-derived precipitation mosaic from 2006 to 2015 is constructed, with features defined as contiguous areas of nonzero precipitation rates. Over the 10 years, there are 54 811 747 nonunique precipitating features over 100 km2 in area, with a median precipitation feature area of 249 km2, median major axis length of 29.2 km, median aspect ratio of 2.0:1, median feature mean precipitation rate of 0.49 mm h−1, and median feature maximum precipitation rate of 2.4 mm h−1. Small-scale precipitating systems are most common, but larger systems exceeding 10 000 km2 contribute close to 70% of the annual precipitation across the study region. Precipitation feature characteristics are sensitive to changes in annual and diurnal environment, with feature intensities peaking during the afternoon in summer and the largest precipitation features occurring during winter. Precipitation intensities less than 5 mm h−1 comprise 97.3% of all precipitation occurrences and contribute 83.6% of the total precipitation over land. Banded precipitation features (defined as precipitation features with aspect ratio at least 3:1 and major axis length at least 100 km) comprise 3% of all precipitation features by occurrence, but contribute 23.7% of the total precipitation. Mesoscale banded features (defined as banded precipitation features with major axis length at least 100 km and total area not exceeding 10 000 km2) and mesoscale convective banded features (defined as banded precipitation features with at least 100 km2 of precipitation rates exceeding 10 mm h−1) are most prevalent in southwestern England, with mesoscale convective banded features contributing up to 2% of precipitation.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2017 American Meteorological Society.

Corresponding author: Dr. Jonathan G. Fairman, jonathan.fairman@manchester.ac.uk
Save