• Balsamo, G., R. Salgado, E. Dutra, S. Boussetta, T. Stockdale, and M. Potes, 2012: On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model. Tellus, 64A, 15829, doi:10.3402/tellusa.v64i0.15829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartholome, E., and A. S. Belward, 2005: GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens., 26, 19591977, doi:10.1080/01431160412331291297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennington, V., M. Notaro, and K. Holman, 2014: Improving climate sensitivity of deep lakes within a regional climate model and its impact on simulated climate. J. Climate, 27, 28862911, doi:10.1175/JCLI-D-13-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., P. Kallberg, S. Kobayashi, D. Dee, S. Uppala, A. J. Simmons, P. Poli, and H. Sato, 2011: Atmospheric conservation properties in ERA-Interim. Quart. J. Roy. Meteor. Soc., 137, 13811399, doi:10.1002/qj.864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1995: Sensitivity of a GCM simulation to inclusion of inland water surfaces. J. Climate, 8, 26912704, doi:10.1175/1520-0442(1995)008<2691:SOAGST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. D., and P. Mote, 2009: The response of Northern Hemisphere snow cover to a changing climate. J. Climate, 22, 21242145, doi:10.1175/2008JCLI2665.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. D., and B. Brasnett, 2010: Canadian Meteorological Centre (CMC) daily snow depth analysis data. National Snow and Ice Data Center, accessed 10 April 2017, doi:10.5067/W9FOYWH0EQZ3.

    • Crossref
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, J., J. P. Walker, and P. R. Houser, 2005: Factors affecting remotely sensed snow water equivalent uncertainty. Remote Sens. Environ., 97, 6882, doi:10.1016/j.rse.2005.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Downing, J. A., and Coauthors, 2006: The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr., 51, 23882397, doi:10.4319/lo.2006.51.5.2388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, B., 1985: New formulation of eddy diffusion thermocline models. Appl. Math. Modell., 9, 441446, doi:10.1016/0307-904X(85)90110-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hostetler, S. W., G. T. Bates, and F. Giorgi, 1993: Interactive coupling of a lake thermal model with a regional climate model. J. Geophys. Res., 98, 50455057, doi:10.1029/92JD02843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imberger, J., 1985: The diurnal mixed layer. Limnol. Oceanogr., 30, 737770, doi:10.4319/lo.1985.30.4.0737.

  • Kourzeneva, E., 2010: External data for lake parameterization in numerical weather prediction and climate modeling. Boreal Environ. Res, 15, 165177.

    • Search Google Scholar
    • Export Citation
  • Le Moigne, P., J. Colin, and B. Decharme, 2016: Impact of lake surface temperatures simulated by the FLake scheme in the CNRM-CM5 climate model. Tellus, 68A, 31274, doi:10.3402/tellusa.v68.31274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lofgren, B. M., 1997: Simulated effects of idealized Laurentian Great Lakes on regional and large-scale climate. J. Climate, 10, 28472858, doi:10.1175/1520-0442(1997)010<2847:SEOILG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, Z., W. Perrie, J. Gyakum, D. Caya, and R. Laprise, 2007: Northern lake impacts on local seasonal climate. J. Hydrometeor., 8, 881896, doi:10.1175/JHM591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacCallum, S. N., and C. J. Merchant, 2012: Surface water temperature observations of large lakes by optimal estimation. Can. J. Rem. Sens., 38, 2545, doi:10.5589/m12-010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacCallum, S. N., and C. J. Merchant, 2013: ARC-Lake v2.0, 1991–2011. School of GeoSciences, University of Edinburgh/European Space Agency, accessed 10 April 2017. [Available online at http://hdl.handle.net/10283/88.]

  • MacKay, M. D., 2012: A process-oriented small lake scheme for coupled climate modeling applications. J. Hydrometeor., 13, 19111924, doi:10.1175/JHM-D-11-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martynov, A., L. Sushama, R. Laprise, K. Winger, and B. Dugas, 2012: Interactive lakes in the Canadian Regional Climate Model, version 5: The role of lakes in the regional climate of North America. Tellus, 64A, 16226, doi:10.3402/tellusa.v64i0.1622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martynov, A., R. Laprise, L. Sushama, K. Winger, L. Šeparović, and B. Dugas, 2013: Reanalysis-driven climate simulation over CORDEX North America domain using the Canadian Regional Climate Model, version 5: Model performance evaluation. Climate Dyn., 41, 29733005, doi:10.1007/s00382-013-1778-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milewska, E. J., R. F. Hopkinson, and A. Niitsoo, 2005: Evaluation of geo-referenced grids of 1961–1990 Canadian temperature and precipitation normals. Atmos.–Ocean, 43, 4975, doi:10.3137/ao.430104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D. A., and R. A. White, 1998: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interact., 2, doi:10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mironov, D. V., 2008: Parameterization of lakes in numerical weather prediction: Description of a lake model. COSMO Tech. Rep. 11, Deutscher Wetterdienst, 41 pp.

  • Mironov, D. V., E. Heise, E. Kourzeneva, B. Ritter, N. Schneider, and A. Terzhevik, 2010: Implementation of the lake parameterization scheme FLake into the numerical weather prediction model COSMO. Boreal Environ. Res., 15, 218230.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., K. Holman, A. Zarrin, E. Fluck, S. Vavrus, and V. Bennington, 2013: Influence of the Laurentian Great Lakes on regional climate. J. Climate, 26, 789804, doi:10.1175/JCLI-D-12-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, K. N., 1980: Diurnal energetics of a reservoir surface layer. University of Western Australia Centre for Water Research Reference ED-80-005, Department of Conservation and Environment Bulletin 75, 227 pp.

  • Samuelsson, P., E. Kourzeneva, and D. Mironov, 2010: The impact of lakes on the European climate as simulated by a regional climate model. Boreal Environ. Res., 15, 113129.

    • Search Google Scholar
    • Export Citation
  • Schaaf, C., and Coauthors, 2002: Global albedo, BRDF and nadir BRDF-adjusted reflectance products from MODIS. Remote Sens. Environ., 2, 135148, doi:10.1016/S0034-4257(02)00091-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., S. F. Halvorson, and D. J. Onton, 2000: Climatology of lake-effect snowstorms of the Great Salt Lake. Mon. Wea. Rev., 128, 709727, doi:10.1175/1520-0493(2000)128<0709:COLESO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takala, M., K. Luojus, J. Pulliainen, C. Derksen, J. Lemmetyinen, J.-P. Kärnä, and B. Bojkov, 2011: Estimating Northern Hemisphere snow water equivalent for climate research through assimilation of spaceborne radiometer data and ground-based measurements. Remote Sens. Environ., 115, 35173529, doi:10.1016/j.rse.2011.08.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verpoorter, C., T. Kutser, D. A. Seekell, and L. J. Tranvik, 2014: A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett., 41, 63966402, doi:10.1002/2014GL060641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., 2017: CLASS—The Canadian Land Surface Scheme (version 3.6.1) technical documentation. Environment and Climate Change Canada Internal Rep., 174 pp. [Available upon request from

  • Verseghy, D. L., R. Brown, and L. Wang, 2017: Evaluation of CLASS snow simulation over eastern Canada. J. Hydrometeor., 18, 12051225, doi:10.1175/JHM-D-16-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., H. Hu, D. Schwab, G. Leshkevich, D. Beletsky, N. Hawley, and A. Clites, 2010: Development of the Great Lakes Ice-circulation Model (GLIM): Application to Lake Erie in 2003–2004. J. Great Lakes Res., 36, 425436, doi:10.1016/j.jglr.2010.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zadra, A., D. Caya, J. Coté, B. Dugas, C. Jones, R. Laprise, K. Winger, and L.-P. Caron, 2008: The next Canadian Regional Climate Model. Phys. Can., 64 (2), 7583.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 326 199 6
PDF Downloads 222 139 2

Offline Implementation and Evaluation of the Canadian Small Lake Model with the Canadian Land Surface Scheme over Western Canada

View More View Less
  • 1 Climate Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
  • | 2 Meteorological Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
Restricted access

Abstract

The Canadian Small Lake Model (CSLM), version 2, was run with the Canadian Land Surface Scheme (CLASS), version 3.6.1, in an offline regional test over western Canada. Forcing data were derived from ERA-Interim and downscaled using the fifth-generation Canadian Regional Climate Model (CRCM5). The forcing precipitation field was adjusted using monthly data from the Canadian Gridded Temperature and Precipitation Anomalies (CANGRD) observation-based dataset. The modeled surface air temperature was evaluated against CANGRD data, the modeled albedo against MODIS data, and the modeled snow water equivalent against Canadian Meteorological Centre (CMC) and Global Snow Monitoring for Climate Research (GlobSnow) data. The lake simulation itself was evaluated using the Along Track Scanning Radiometer (ATSR) Reprocessing for Climate: Lake Surface Water Temperature and Ice Cover (ARC-Lake) dataset. Summer surface lake temperatures and the lake ice formation and breakup periods were well simulated, except for slight warm/cold summer/fall surface temperature biases, early ice breakup, and early ice formation, consistent with warm/cold biases in the climate simulation. Tests were carried out to investigate the sensitivity of the CSLM simulation to the default values assigned to the shortwave extinction coefficient and the average lake depth, and changing the former from 0.5 to 2.0 m−1 and the latter from 10.0 to 50.0 or 5.0 m had minimal effects on the simulation. Comparisons of the average annual variations of the simulated net shortwave radiation, turbulent fluxes, snowpack, and maximum and minimum daily surface temperatures between the land and the lake fractions for tundra, boreal, and southern regions showed patterns consistent with those expected. Finally, a test of the CSLM over the large resolved lakes in the model domain demonstrated a performance comparable to that for subgrid lakes.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

Corresponding author: Murray MacKay, murray.mackay@canada.ca

Abstract

The Canadian Small Lake Model (CSLM), version 2, was run with the Canadian Land Surface Scheme (CLASS), version 3.6.1, in an offline regional test over western Canada. Forcing data were derived from ERA-Interim and downscaled using the fifth-generation Canadian Regional Climate Model (CRCM5). The forcing precipitation field was adjusted using monthly data from the Canadian Gridded Temperature and Precipitation Anomalies (CANGRD) observation-based dataset. The modeled surface air temperature was evaluated against CANGRD data, the modeled albedo against MODIS data, and the modeled snow water equivalent against Canadian Meteorological Centre (CMC) and Global Snow Monitoring for Climate Research (GlobSnow) data. The lake simulation itself was evaluated using the Along Track Scanning Radiometer (ATSR) Reprocessing for Climate: Lake Surface Water Temperature and Ice Cover (ARC-Lake) dataset. Summer surface lake temperatures and the lake ice formation and breakup periods were well simulated, except for slight warm/cold summer/fall surface temperature biases, early ice breakup, and early ice formation, consistent with warm/cold biases in the climate simulation. Tests were carried out to investigate the sensitivity of the CSLM simulation to the default values assigned to the shortwave extinction coefficient and the average lake depth, and changing the former from 0.5 to 2.0 m−1 and the latter from 10.0 to 50.0 or 5.0 m had minimal effects on the simulation. Comparisons of the average annual variations of the simulated net shortwave radiation, turbulent fluxes, snowpack, and maximum and minimum daily surface temperatures between the land and the lake fractions for tundra, boreal, and southern regions showed patterns consistent with those expected. Finally, a test of the CSLM over the large resolved lakes in the model domain demonstrated a performance comparable to that for subgrid lakes.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

Corresponding author: Murray MacKay, murray.mackay@canada.ca
Save