• Adam, J. C., A. F. Hamlet, and D. P. Lettenmaier, 2009: Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol. Processes, 23, 962972, doi:10.1002/hyp.7201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, doi:10.1038/nature04141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, C., and U. Lall, 2006: Water and economic development: The role of variability and a framework for resilience. Nat. Resour. Forum, 30, 306317, doi:10.1111/j.1477-8947.2006.00118.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, M. B., and A. B. Forsythe, 1974: Robust tests for the equality of variances. J. Amer. Stat. Assoc., 69, 364367, doi:10.1080/01621459.1974.10482955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charrad, M., N. Ghazzali, V. Boiteau, and A. Niknafs, 2014: NbClust: An R package for determining the relevant number of clusters in a data set. J. Stat. Software, 61, 136, doi:10.18637/jss.v061.i06.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charrad, M., N. Ghazzali, V. Boiteau, and A. Niknafs, 2015: NbClust: Determining the best number of clusters in a data set, version 3.0. R package. [Available online at https://cran.r-project.org/web/packages/NbClust/index.html.]

  • Crowley, T. J., 2000: Causes of climate change over the past 1000 years. Science, 289, 270277, doi:10.1126/science.289.5477.270.

  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661676, doi:10.1007/s003820000075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finland’s Environmental Administration, 2015: OIVA database. Accessed 28 May 2015. [Available online at http://wwwd3.ymparisto.fi/d3/aineistolataus.htm.]

  • Fischer, E. M., and C. Schär, 2009: Future changes in daily summer temperature variability: Driving processes and role for temperature extremes. Climate Dyn., 33, 917935, doi:10.1007/s00382-008-0473-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, R. A., 1934: Statistical Methods for Research Workers. 5th ed. Oliver and Boyd, 283 pp.

  • Frei, C., R. Schöll, S. Fukutome, J. Schmidli, and P. L. Vidale, 2006: Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models. J. Geophys. Res., 111, D06105, doi:10.1029/2005JD005965.

    • Search Google Scholar
    • Export Citation
  • Gastwirth, J. L., Y. R. Gel, W. L. Wallace Hui, V. Lyubchich, W. Miao, and K. Noguchi, 2015: Lawstat: Tools for biostatistics, public policy, and law, version 3.0. R package. [Available online at https://cran.r-project.org/web/packages/lawstat/index.html.]

  • Giorgi, F., and X. Bi, 2005: Regional changes in surface climate interannual variability for the 21st century from ensembles of global model simulations. Geophys. Res. Lett., 32, L13701, doi:10.1029/2005GL023002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., X. Bi, and J. Pal, 2004a: Mean, interannual variability and trends in a regional climate change experiment over Europe. I. Present-day climate (1961–1990). Climate Dyn., 22, 733756, doi:10.1007/s00382-004-0409-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., X. Bi, and J. Pal, 2004b: Mean, interannual variability and trends in a regional climate change experiment over Europe. II: Climate change scenarios (2071–2100). Climate Dyn., 23, 839858, doi:10.1007/s00382-004-0467-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, X., and M. B. Richman, 1995: On the application of cluster analysis to growing season precipitation data in North America east of the Rockies. J. Climate, 8, 897931, doi:10.1175/1520-0442(1995)008<0897:OTAOCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grossmann, I., and P. J. Klotzbach, 2009: A review of North Atlantic modes of natural variability and their driving mechanisms. J. Geophys. Res., 114, D24107, doi:10.1029/2009JD012728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hisdal, H., L. A. Roald, and S. Beldring, 2006: Past and future changes in flood and drought in the Nordic countries. IAHS Publ., 308, 502507.

    • Search Google Scholar
    • Export Citation
  • Hogg, R. V., 1961: On the resolution of statistical hypotheses. J. Amer. Stat. Assoc., 56, 978989, doi:10.1080/01621459.1961.10482139.

  • Howden, S. M., J.-F. Soussana, F. N. Tubiello, N. Chhetri, M. Dunlop, and H. Meinke, 2007: Adapting agriculture to climate change. Proc. Natl. Acad. Sci. USA, 104, 19 69119 696, doi:10.1073/pnas.0701890104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and C. Deser, 2010: North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst., 79, 231244, doi:10.1016/j.jmarsys.2009.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35.

    • Crossref
    • Export Citation
  • Hyvärinen, V., 2003: Trends and characteristics of hydrological time series in Finland. Hydrol. Res., 34, 7190.

  • IPCC, 2001: Climate Change 2001: The Scientific Basis. J. T. Houghton et al., Eds., Cambridge University Press, 881 pp.

  • IPCC, 2015: Climate Change 2014: Synthesis Report. Cambridge University Press, 151 pp.

  • Irannezhad, M., D. Chen, and B. Kløve, 2014a: Interannual variations and trends in surface air temperature in Finland in relation to atmospheric circulation patterns, 1961–2011. Int. J. Climatol., 35, 30783092, doi:10.1002/joc.4193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irannezhad, M., H. Marttila, and B. Kløve, 2014b: Long-term variations and trends in precipitation in Finland. Int. J. Climatol., 34, 31393153, doi:10.1002/joc.3902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irannezhad, M., A. K. Ronkanen, and B. Kløve, 2015: Effects of climate variability and change on snowpack hydrological processes in Finland. Cold Reg. Sci. Technol., 118, 1429, doi:10.1016/j.coldregions.2015.06.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irannezhad, M., A. K. Ronkanen, and B. Kløve, 2016: Wintertime climate factors controlling snow resource decline in Finland. Int. J. Climatol., 36, 110131, doi:10.1002/joc.4332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolliffe, I., 2002: Principal Component Analysis. 2nd ed. Springer, 488 pp

  • Jylhä, K., H. Tuomenvirta, and K. Ruosteenoja, 2004: Climate change projections for Finland during the 21st century. Boreal Environ. Res., 9, 127152.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., and B. G. Brown, 1992: Extreme events in a changing climate: Variability is more important than averages. Climatic Change, 21, 289302, doi:10.1007/BF00139728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Käyhkö, J., 2004: Muuttuuko Pohjolan ilmasto? (Fennoscandian climate in change?). Turun Yliopiston Maantieteen Laitoksen Julk., 168, 1935.

    • Search Google Scholar
    • Export Citation
  • Kellomäki, S., H. Peltola, T. Nuutinen, K. T. Korhonen, and H. Strandman, 2008: Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Philos. Trans. Roy. Soc. London, 363B, 23392349, doi:10.1098/rstb.2007.2204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. 4th ed. C. Griffin, 272 pp.

  • Korhonen, J., 2007: Long-term discharge trends in Finland. The Third International Conference on Climate and Water, M. Heinonen, Ed., Finnish Environment Institute, 245–250.

  • Korhonen, J., and E. Kuusisto, 2010: Long-term changes in the discharge regime in Finland. Hydrol. Res., 41, 253268, doi:10.2166/nh.2010.112.

  • Krumbein, W. C., and F. A. Graybill, 1965: An Introduction to Statistical Models in Geology. McGraw-Hill, 475 pp.

  • Kummu, M., D. Gerten, J. Heinke, M. Konzmann, and O. Varis, 2014: Climate-driven interannual variability of water scarcity in food production potential: A global analysis. Hydrol. Earth Syst. Sci., 18, 447461, doi:10.5194/hess-18-447-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuusisto, E., 1984: Snow accumulation and snowmelt in Finland. Publ. of the Water Research Institute 55, National Board of Waters, Finland, 149 pp. [Available online at https://helda.helsinki.fi/bitstream/handle/10138/31432/Vesientutkimuslaitoksen?sequence=1.]

  • Lehtonen, H., and S. Kujala, 2007: Climate change impacts on crop risks and agricultural production in Finland. 101st Seminar, Berlin, Germany, European Association of Agricultural Economists, 9259.

  • Leys, C., C. Ley, O. Klein, P. Bernard, and L. Licata, 2013: Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol., 49, 764766, doi:10.1016/j.jesp.2013.03.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, T.-S., and W.-Y. Loh, 1996: A comparison of tests of equality of variances. Comput. Stat. Data Anal., 22, 287301, doi:10.1016/0167-9473(95)00054-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindgren, V., T. A. Räsänen, J. H. A. Guillaume, M. Kummu, J. Jakkila, and N. Veijalainen, 2017: Spatio-temporal changes in variability of temperature, precipitation and runoff in Finland during the period 1962–2014. PANGAEA, accessed 7 April 2017, doi:10.1594/PANGAEA.873939.

    • Crossref
    • Export Citation
  • Luterbacher, J., D. Dietrich, E. Xoplaki, M. Grosjean, and H. Wanner, 2004: European seasonal and annual temperature variability, trends, and extremes since 1500. Science, 303, 14991503, doi:10.1126/science.1093877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, doi:10.2307/1907187.

  • Maracchi, G., O. Sirotenko, and M. Bindi, 2005: Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Europe. Climatic Change, 70, 117135, doi:10.1007/s10584-005-5939-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 2001: North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol., 21, 18631898, doi:10.1002/joc.693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marttila, V., and Coauthors, 2005: Finland’s National Strategy for Adaptation to Climate Change. Publ. 1a/2005, Ministry of Agriculture and Forestry of Finland, 280 pp. [Available online at http://ilmastotyokalut.fi/files/2014/10/MMMjulkaisu2005_1a-1.pdf.]

  • Mikkonen, S., M. Laine, H. M. Mäkelä, H. Gregow, H. Tuomenvirta, M. Lahtinen, and A. Laaksonen, 2015: Trends in the average temperature in Finland, 1847–2013. Stochastic Environ. Res. Risk Assess., 29, 15211529, doi:10.1007/s00477-014-0992-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mimmack, G. M., S. J. Mason, and J. S. Galpin, 2001: Choice of distance matrices in cluster analysis: Defining regions. J. Climate, 14, 27902797, doi:10.1175/1520-0442(2001)014<2790:CODMIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moberg, A., D. M. Sonechkin, K. Holmgren, N. M. Datsenko, and W. Karlén, 2005: Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature, 433, 613617, doi:10.1038/nature03265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mudholkar, G. S., M. P. McDermott, and J. Aumont, 1993: Testing homogeneity of ordered variances. Metrika, 40, 271281, doi:10.1007/BF02613691.

  • Mudholkar, G. S., M. P. McDermott, and A. Mudholkar, 1995: Robust finite-intersection tests for homogeneity of ordered variances. J. Stat. Plan. Inference, 43, 185195, doi:10.1016/0378-3758(94)00018-Q.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murtagh, F., and P. Legendre, 2014: Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? J. Classif., 31, 274295, doi:10.1007/s00357-014-9161-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noguchi, K., and Y. R. Gel, 2010: Combination of Levene-type tests and a finite-intersection method for testing equality of variances against ordered alternatives. J. Nonparametric Stat., 22, 897913, doi:10.1080/10485251003698505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oikarinen, E. M., 2014: Urban design with weather variability—Adaptive capacity approaches towards northern climate now and in the future. Proc. Sixth Annual Symp. of Architectural Research, Oulu, Finland, University of Oulu, 119–132. [Available online at https://journal.fi/atut/article/view/46145.]

  • Olsson, T., J. Jakkila, N. Veijalainen, L. Backman, J. Kaurola, and B. Vehviläinen, 2015: Impacts of climate change on temperature, precipitation and hydrology in Finland—Studies using bias corrected regional climate model data. Hydrol. Earth Syst. Sci., 19, 32173238, doi:10.5194/hess-19-3217-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltonen-Sainio, P., L. Jauhiainen, K. Hakala, and H. Ojanen, 2009: Climate change and prolongation of growing season: Changes in regional potential for field crop production in Finland. Agric. Food Sci., 18, 171190, doi:10.2137/145960609790059479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Räisänen, J., 2002: CO2-induced changes in interannual temperature and precipitation variability in 19 CMIP2 experiments. J. Climate, 15, 23952411, doi:10.1175/1520-0442(2002)015<2395:CICIIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. J. Climatol., 6, 293335, doi:10.1002/joc.3370060305.

  • Saarinen, J., and K. Tervo, 2006: Perceptions and adaptation strategies of the tourism industry to climate change: The case of Finnish nature-based tourism entrepreneurs. Int. J. Innov. Sustain. Dev., 1, 214228, doi:10.1504/IJISD.2006.012423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santander Meteorology Group, 2012: FUME: A set of functions for fire danger and climate analysis, version 1.0. R package. [Available online at https://cran.r-project.org/src/contrib/Archive/fume.]

  • Schär, C., P. L. Vidale, D. Lüthi, C. Frei, C. Häberli, M. A. Liniger, and C. Appenzeller, 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332336, doi:10.1038/nature02300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taskinen, A., and K. Söderholm, 2016: Operational correction of daily precipitation measurements in Finland. Boreal Environ. Res., 21, 124.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., K. Hayhoe, J. M. Arblaster, and G. A. Meehl, 2006: Going to the extremes: An intercomparison of model-simulated historical and future changes in extreme events. Climatic Change, 79, 185211, doi:10.1007/s10584-006-9051-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tervo, K., 2008: The operational and regional vulnerability of winter tourism to climate variability and change: The case of the Finnish nature-based tourism entrepreneurs. Scand. J. Hosp. Tour., 8, 317332, doi:10.1080/15022250802553696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornton, P. K., P. J. Ericksen, M. Herrero, and A. J. Challinor, 2014: Climate variability and vulnerability to climate change: A review. Global Change Biol., 20, 33133328, doi:10.1111/gcb.12581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuomenvirta, H., and R. Heino, 1996: Climate change in Finland—Recent findings. Geophysica, 32, 6175.

  • Tuomenvirta, H., H. Alexandersson, A. Drebs, P. Frich, and P. O. Nordli, 1998: Trends in Nordic and Arctic extreme temperatures. DNMI Rep. 13/98, Norwegian Meteorological Institute, 37 pp.

  • Tuomenvirta, H., H. Alexandersson, A. Drebs, P. Frich, and P. O. Nordli, 2000: Trends in Nordic and Arctic temperature extremes and ranges. J. Climate, 13, 977990, doi:10.1175/1520-0442(2000)013<0977:TINAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uvo, C. B., 2003: Analysis and regionalization of northern European winter precipitation based on its relationship with the North Atlantic Oscillation. Int. J. Climatol., 23, 11851194, doi:10.1002/joc.930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vehviläinen, B., M. Huttunen, and I. Huttunen, 2005: Hydrological forecasting and real time monitoring in Finland: The Watershed Simulation and Forecasting System (WSFS). Innovation, Advances and Implementation of Flood Forecasting Technology—Conference Papers, P. Balabanis, D. Lumbroso, and P. Samuels, Eds., HR Wallingford.

  • Veijalainen, N., 2012: Estimation of Climate Change Impacts on Hydrology and Floods in Finland. Aalto University, 211 pp.

  • Veijalainen, N., E. Lotsari, P. Alho, B. Vehviläinen, and J. Käyhkö, 2010: National scale assessment of climate change impacts on flooding in Finland. J. Hydrol., 391, 333350, doi:10.1016/j.jhydrol.2010.07.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanner, H., S. Brönnimann, C. Casty, D. Gyalistras, J. Luterbacher, C. Schmutz, D. B. Stephenson, and E. Xoplaki, 2001: North Atlantic Oscillation—Concepts and studies. Surv. Geophys., 22, 321381, doi:10.1023/A:1014217317898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, J. H. J., 1963: Hierarchical grouping to optimize an objective function. J. Amer. Stat. Assoc., 58, 236244, doi:10.1080/01621459.1963.10500845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, D., H. Hisdal, and D. Lawrence, 2010: Has streamflow changed in the Nordic countries?—Recent trends and comparisons to hydrological projections. J. Hydrol., 394, 334346, doi:10.1016/j.jhydrol.2010.09.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 193 113 5
PDF Downloads 152 92 4

Spatiotemporal Hydroclimate Variability in Finland: Past Trends

View More View Less
  • 1 Water and Development Research Group, Aalto University, Aalto, Finland
  • | 2 Freshwater Center, Finnish Environment Institute, Helsinki, Finland
  • | 3 Water and Development Research Group, Aalto University, Aalto, Finland
Restricted access

Abstract

Over the past decades, Finland has experienced changes in its climate: temperature and precipitation have increased, resulting in varying runoff patterns. These trends are well studied, but the changes in interannual variability are less known, despite their importance for understanding climate change. This research aims to assess spatiotemporal changes in variability of temperature, precipitation, and runoff for 1962–2014 at the subbasin scale in Finland. Temporal changes in variability were analyzed by constructing moving-window median absolute deviation time series at annual and seasonal scales. Subbasins with similar patterns of temporal variability were identified using principal component analysis and agglomerative hierarchical clustering. Presence of monotonic trends in variability was tested. Distinct areas with similar patterns of statistically significant changes in variability were found. Decreases in annual, winter, and summer temperature variability were discovered across Finland, in southern Finland, and in northern Finland, respectively. Precipitation variability increased in autumn in northern Finland. It also decreased in winter and spring in northern and central parts of Finland. Runoff variability increased in winter in most parts of Finland and in summer in the central parts, but decreased in spring in southern Finland. Comparison with existing studies illustrates that trends in mean climate and its variability do not necessarily match, highlighting the importance of addressing both aspects. The findings of this study provide new information on hydroclimatic variability in Nordic conditions and improve the possibility to adapt and predict the changes in hydroclimatic conditions, including weather extremes.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ville Lindgren, ville.v.lindgren@aalto.fi

Abstract

Over the past decades, Finland has experienced changes in its climate: temperature and precipitation have increased, resulting in varying runoff patterns. These trends are well studied, but the changes in interannual variability are less known, despite their importance for understanding climate change. This research aims to assess spatiotemporal changes in variability of temperature, precipitation, and runoff for 1962–2014 at the subbasin scale in Finland. Temporal changes in variability were analyzed by constructing moving-window median absolute deviation time series at annual and seasonal scales. Subbasins with similar patterns of temporal variability were identified using principal component analysis and agglomerative hierarchical clustering. Presence of monotonic trends in variability was tested. Distinct areas with similar patterns of statistically significant changes in variability were found. Decreases in annual, winter, and summer temperature variability were discovered across Finland, in southern Finland, and in northern Finland, respectively. Precipitation variability increased in autumn in northern Finland. It also decreased in winter and spring in northern and central parts of Finland. Runoff variability increased in winter in most parts of Finland and in summer in the central parts, but decreased in spring in southern Finland. Comparison with existing studies illustrates that trends in mean climate and its variability do not necessarily match, highlighting the importance of addressing both aspects. The findings of this study provide new information on hydroclimatic variability in Nordic conditions and improve the possibility to adapt and predict the changes in hydroclimatic conditions, including weather extremes.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ville Lindgren, ville.v.lindgren@aalto.fi
Save