• Avissar, R., and T. Schmidt, 1998: An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J. Atmos. Sci., 55, 26662689, doi:10.1175/1520-0469(1998)055<2666:AEOTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M. B., and J. Latham, 1979: The evolution of droplet spectra and the rate of production of embryonic raindrops in small cumulus clouds. J. Atmos. Sci., 36, 16121615, doi:10.1175/1520-0469(1979)036<1612:TEODSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., and S. Ma, 2013: How will land use affect air temperature in the surface boundary layer? Lessons learned from a comparative study on the energy balance of an oak savanna and annual grassland in California, USA. Tellus, 65B, 19994, doi:10.3402/tellusb.v65i0.19994.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., B. A. Hutchison, D. R. Matt, and R. T. McMillen, 1985: Canopy radiative transfer models for spherical and known leaf inclination angle distributions: A test in an oak–hickory forest. J. Appl. Ecol., 22, 539555, doi:10.2307/2403184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbaro, E., 2015: Interaction between aerosols and convective boundary-layer dynamics over land. Ph.D. thesis, Wageningen University, 193 pp. [Available online at http://edepot.wur.nl/335853.]

  • Barbaro, E., J. V.-G. de Arellano, H. G. Ouwersloot, J. S. Schrter, D. P. Donovan, and M. C. Krol, 2014: Aerosols in the convective boundary layer: Shortwave radiation effects on the coupled land–atmosphere system. J. Geophys. Res. Atmos., 119, 58455863, doi:10.1002/2013JD021237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1973: Non-precipitating cumulus convection and its parameterization. Quart. J. Roy. Meteor. Soc., 99, 178196, doi:10.1002/qj.49709941915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., M. Goulden, and S. Wofsy, 1999: Controls on evaporation in a boreal spruce forest. J. Climate, 12, 16011618, doi:10.1175/1520-0442(1999)012<1601:COEIAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böing, S. J., H. J. J. Jonker, A. P. Siebesma, and W. W. Grabowski, 2012: Influence of the subcloud layer on the development of a deep convective ensemble. J. Atmos. Sci., 69, 26822698, doi:10.1175/JAS-D-11-0317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boussetta, S., and Coauthors, 2013: Natural land carbon dioxide exchanges in the ECMWF Integrated Forecasting System: Implementation and offline validation. J. Geophys. Res. Atmos., 118, 59235946, doi:10.1002/jgrd.50488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brodersen, C. R., T. C. Vogelmann, W. E. Williams, and H. L. Gorton, 2008: A new paradigm in leaf-level photosynthesis: Direct and diffuse lights are not equal. Plant Cell Environ., 31, 159164, doi:10.1111/j.1365-3040.2007.01751.x.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., and Coauthors, 2002: Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Quart. J. Roy. Meteor. Soc., 128, 10751093, doi:10.1256/003590002320373210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, S. J., A. L. Steiner, D. Y. Hollinger, G. Bohrer, and K. J. Nadelhoffer, 2016: Using satellite-derived optical thickness to assess the influence of clouds on terrestrial carbon uptake. J. Geophys. Res. Biogeosci., 121, 17471761, doi:10.1002/2016JG003365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chlond, A., O. Boehringer, T. Auerswald, and F. Mueller, 2014: The effect of soil moisture and atmospheric conditions on the development of shallow cumulus convection: A coupled large-eddy simulation–land surface model study. Meteor. Z., 23, 491510, doi:10.1127/metz/2014/0576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Bruin, H. A. R., and Coauthors, 1989: Forests and regional-scale processes. Philos. Trans. Roy. Soc. London, 324B, 393406, doi:10.1098/rstb.1989.0054.

    • Search Google Scholar
    • Export Citation
  • Esau, I., and T. Lyons, 2002: Effect of sharp vegetation boundary on the convective atmospheric boundary layer. Agric. For. Meteor., 114, 313, doi:10.1016/S0168-1923(02)00154-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freedman, J. M., D. R. Fitzjarrald, K. E. Moore, and R. K. Sakai, 2001: Boundary layer clouds and vegetation–atmosphere feedbacks. J. Climate, 14, 180197, doi:10.1175/1520-0442(2001)013<0180:BLCAVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia-Carreras, L., D. J. Parker, C. M. Taylor, C. E. Reeves, and J. G. Murphy, 2010: Impact of mesoscale vegetation heterogeneities on the dynamical and thermodynamic properties of the planetary boundary layer. J. Geophys. Res., 115, D03102, doi:10.1029/2009JD012811.

    • Search Google Scholar
    • Export Citation
  • Garcia-Carreras, L., D. J. Parker, and J. H. Marsham, 2011: What is the mechanism for the modification of convective cloud distributions by land surface–induced flows? J. Atmos. Sci., 68, 619634, doi:10.1175/2010JAS3604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., H. Jiang, and W. R. Cotton, 2001: A large-eddy simulation study of cumulus clouds over land and sensitivity to soil moisture. Atmos. Res., 59–60, 373392, doi:10.1016/S0169-8095(01)00113-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goudriaan, J., 1977: Crop micrometeorology: A simulation study. Ph.D. thesis, Wageningen University, 249 pp. [Available online at http://edepot.wur.nl/166537.]

  • Goudriaan, J., 1986: A simple and fast numerical method for the computation of daily totals of crop photosynthesis. Agric. For. Meteor., 38, 249254, doi:10.1016/0168-1923(86)90063-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gronemeier, T., F. Kanani-Sühring, and S. Raasch, 2017: Do shallow cumulus clouds have the potential to trigger secondary circulations via shading? Bound.-Layer Meteor., 162, 143169, doi:10.1007/s10546-016-0180-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, L., D. D. Baldocchi, S. C. Wofsy, J. W. Munger, J. J. Michalsky, S. P. Urbanski, and T. A. Boden, 2003: Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science, 299, 20352038, doi:10.1126/science.1078366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heus, T., and Coauthors, 2010: Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications. Geosci. Model Dev., 3, 415444, doi:10.5194/gmd-3-415-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heus, T., and H. J. J. Jonker, 2008: Subsiding shells around shallow cumulus clouds. J. Atmos. Sci., 65, 10031018, doi:10.1175/2007JAS2322.1.

  • Horn, G. L., H. G. Ouwersloot, J. Vilà-Guerau de Arellano, and M. Sikma, 2015: Cloud shading effects on characteristic boundary-layer length scales. Bound.-Layer Meteor., 157, 237263, doi:10.1007/s10546-015-0054-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H.-Y., and S. A. Margulis, 2010: Evaluation of a fully coupled large-eddy simulation–land surface model and its diagnosis of land–atmosphere feedbacks. Water Resour. Res., 46, W06512, doi:10.1029/2009WR008232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, C. M. J., and H. A. R. de Bruin, 1997: Predicting regional transpiration at elevated atmospheric CO2: Influence of the PBL–vegetation interaction. J. Appl. Meteor., 36, 16631675, doi:10.1175/1520-0450(1997)036<1663:PRTAEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, C. M. J., B. van den Hurk, and H. de Bruin, 1996: Stomatal behaviour and photosynthetic rate of unstressed grapevines in semi-arid conditions. Agric. For. Meteor., 80, 111134, doi:10.1016/0168-1923(95)02295-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, J. H., W. J. Wiscombe, and J. A. Weinman, 1976: The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33, 24522459, doi:10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanniah, K. D., J. Beringer, P. North, and L. Hutley, 2012: Control of atmospheric particles on diffuse radiation and terrestrial plant productivity: A review. Prog. Phys. Geogr., 36, 209237, doi:10.1177/0309133311434244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knohl, A., and D. D. Baldocchi, 2008: Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. J. Geophys. Res., 113, G02023, doi:10.1029/2007JG000663.

    • Search Google Scholar
    • Export Citation
  • Lohou, F., and E. G. Patton, 2014: Surface energy balance and buoyancy response to shallow cumulus shading. J. Atmos. Sci., 71, 665682, doi:10.1175/JAS-D-13-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, C., S. Niu, Y. Liu, and A. M. Vogelmann, 2013: Empirical relationship between entrainment rate and microphysics in cumulus clouds. Geophys. Res. Lett., 40, 23332338, doi:10.1002/grl.50445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, S. A., and W. W. Grabowski, 2007: Optical properties of shallow tropical cumuli derived from arm ground-based remote sensing. Geophys. Res. Lett., 34, L06808, doi:10.1029/2006GL028767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, Q., 2005: Impacts of aerosols and clouds on forest–atmosphere carbon exchange. J. Geophys. Res., 110, D06203, doi:10.1029/2004JD004858.

    • Search Google Scholar
    • Export Citation
  • Min, Q., and S. Wang, 2008: Clouds modulate terrestrial carbon uptake in a midlatitude hardwood forest. Geophys. Res. Lett., 35, L02406, doi:10.1029/2007GL032398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neggers, R., B. Stevens, and J. D. Neelin, 2006: A simple equilibrium model for shallow-cumulus-topped mixed layers. Theor. Comput. Fluid Dyn., 20, 305322, doi:10.1007/s00162-006-0030-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., and R. A. Brost, 1986: The decay of convective turbulence. J. Atmos. Sci., 43, 532546, doi:10.1175/1520-0469(1986)043<0532:TDOCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norman, J., 1979: Modeling the complete crop canopy. Modification of the Aerial Environment of Crops, B. J. Barfield and J. F. Gerber, Eds., American Society of Agricultural Engineers, 249–280.

  • Oliphant, A., D. Dragoni, B. Deng, C. Grimmond, H.-P. Schmid, and S. Scott, 2011: The role of sky conditions on gross primary production in a mixed deciduous forest. Agric. For. Meteor., 151, 781791, doi:10.1016/j.agrformet.2011.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliveira, P. J. C., E. L. Davin, S. Levis, and S. I. Seneviratne, 2011: Vegetation-mediated impacts of trends in global radiation on land hydrology: A global sensitivity study. Global Change Biol., 17, 34533467, doi:10.1111/j.1365-2486.2011.02506.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ouwersloot, H. G., J. Vilà-Guerau de Arellano, C. C. van Heerwaarden, L. N. Ganzeveld, M. C. Krol, and J. Lelieveld, 2011: On the segregation of chemical species in a clear boundary layer over heterogeneous land surfaces. Atmos. Chem. Phys., 11, 10 68110 704, doi:10.5194/acp-11-10681-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ouwersloot, H. G., J. V.-G. de Arellano, B. J. H. van Stratum, M. C. Krol, and J. Lelieveld, 2013: Quantifying the transport of subcloud layer reactants by shallow cumulus clouds over the Amazon. J. Geophys. Res. Atmos., 118, 13 04113 059, doi:10.1002/2013JD020431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ouwersloot, H. G., A. F. Moene, J. J. Attema, and J. V.-G. de Arellano, 2017: Large-eddy simulation comparison of neutral flow over a canopy: Sensitivities to physical and numerical conditions, and similarity to other representations. Bound.-Layer Meteor., 162, 7189, doi:10.1007/s10546-016-0182-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patton, E. G., P. P. Sullivan, and C.-H. Moeng, 2005: The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J. Atmos. Sci., 62, 20782097, doi:10.1175/JAS3465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ronda, R. J., H. A. R. de Bruin, and A. A. M. Holtslag, 2001: Representation of the canopy conductance in modeling the surface energy budget for low vegetation. J. Appl. Meteor., 40, 14311444, doi:10.1175/1520-0450(2001)040<1431:ROTCCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumann, U., A. Dörnbrack, and B. Mayer, 2002: Cloud-shadow effects on the structure of the convective boundary layer. Meteor. Z., 11, 285294, doi:10.1127/0941-2948/2002/0011-0285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, S. E., D. Huang, and D. V. Vladutescu, 2017: High-resolution photography of clouds from the surface: Retrieval of optical depth of thin clouds down to centimeter scales. J. Geophys. Res. Atmos., 122, 28982928, doi:10.1002/2016JD025384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shettle, E. P., and J. A. Weinman, 1970: The transfer of solar irradiance through inhomogeneous turbid atmospheres evaluated by Eddington’s approximation. J. Atmos. Sci., 27, 10481055, doi:10.1175/1520-0469(1970)027<1048:TTOSIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, doi:10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sikma, M., and H. G. Ouwersloot, 2015: Parameterizations for convective transport in various cloud-topped boundary layers. Atmos. Chem. Phys., 15, 10 39910 410, doi:10.5194/acp-15-10399-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slawinska, J., W. W. Grabowski, H. Pawlowska, and A. A. Wyszogrodzki, 2008: Optical properties of shallow convective clouds diagnosed from a bulk-microphysics large-eddy simulation. J. Climate, 21, 16391647, doi:10.1175/2007JCLI1820.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spitters, C., 1986: Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis Part II. Calculation of canopy photosynthesis. Agric. For. Meteor., 38, 231242, doi:10.1016/0168-1923(86)90061-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1984: The parameterization of radiation for numerical weather prediction and climate models. Mon. Wea. Rev., 112, 826867, doi:10.1175/1520-0493(1984)112<0826:TPORFN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Urban, O., and Coauthors, 2012: Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO2 uptake within a spruce canopy. Funct. Ecol., 26, 4655, doi:10.1111/j.1365-2435.2011.01934.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Heerwaarden, C. C., J. Vilà-Guerau de Arellano, A. F. Moene, and A. A. M. Holtslag, 2009: Interactions between dry-air entrainment, surface evaporation and convective boundary-layer development. Quart. J. Roy. Meteor. Soc., 135, 12771291, doi:10.1002/qj.431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Heerwaarden, C. C., J. Vilà-Guerau de Arellano, A. Gounou, F. Guichard, and F. Couvreux, 2010: Understanding the daily cycle of evapotranspiration: A method to quantify the influence of forcings and feedbacks. J. Hydrometeor., 11, 14051422, doi:10.1175/2010JHM1272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Stratum, B. J. H., J. Vilà-Guerau de Arellano, C. C. van Heerwaarden, and H. G. Ouwersloot, 2014: Subcloud-layer feedbacks driven by the mass flux of shallow cumulus convection over land. J. Atmos. Sci., 71, 881895, doi:10.1175/JAS-D-13-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vilà-Guerau de Arellano, J., C. C. van Heerwaarden, and J. Lelieveld, 2012: Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere. Nat. Geosci., 5, 701704, doi:10.1038/ngeo1554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vilà-Guerau de Arellano, J., H. G. Ouwersloot, D. Baldocchi, and C. M. J. Jacobs, 2014: Shallow cumulus rooted in photosynthesis. Geophys. Res. Lett., 41, 17961802, doi:10.1002/2014GL059279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vilà-Guerau de Arellano, J., C. C. van Heerwaarden, B. J. van Stratum, and K. van den Dries, 2015: Atmospheric Boundary Layer: Integrating Air Chemistry and Land Interactions. Cambridge University Press, 276 pp., doi:10.1017/CBO9781316117422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K., R. E. Dickinson, and S. Liang, 2008: Observational evidence on the effects of clouds and aerosols on net ecosystem exchange and evapotranspiration. Geophys. Res. Lett., 35, L10401, doi:10.1029/2008GL034167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, H., S. C. Liu, and R. E. Dickinson, 2002: Radiative effects of aerosols on the evolution of the atmospheric boundary layer. J. Geophys. Res., 107, 4142, doi:10.1029/2001JD000754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2005: Life cycle of numerically simulated shallow cumulus clouds. Part I: Transport. J. Atmos. Sci., 62, 12691290, doi:10.1175/JAS3414.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 685 374 7
PDF Downloads 494 267 7

Direct and Diffuse Radiation in the Shallow Cumulus–Vegetation System: Enhanced and Decreased Evapotranspiration Regimes

View More View Less
  • 1 Meteorology and Air Quality Group, Wageningen University and Research, Wageningen, Netherlands
  • | 2 Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
  • | 3 Meteorology and Air Quality Group, Wageningen University and Research, Wageningen, Netherlands
  • | 4 Climate Change and Adaptive Land and Water Management, Wageningen University and Research, Wageningen, Netherlands
  • | 5 Meteorology and Air Quality Group, Wageningen University and Research, Wageningen, Netherlands
Restricted access

Abstract

Guided by a holistic approach, the combined effects of direct and diffuse radiation on the atmospheric boundary layer dynamics over vegetated land are investigated on a daily scale. Three numerical experiments are designed that are aimed at disentangling the role of diffuse and direct radiation below shallow cumulus at the surface and on boundary layer dynamics. A large-eddy simulation (LES) model coupled to a land surface model is used, including a mechanistically immediate response of plants to radiation, temperature, and water vapor deficit changes. The partitioning in direct and diffuse radiation created by clouds and farther inside the canopy is explicitly accounted for. LES results are conditionally averaged as a function of the cloud optical depth. The findings show larger photosynthesis under thin clouds than under clear sky, due to an increase in diffuse radiation and a slight decrease in direct radiation. The reduced canopy resistance is the main driver for the enhanced carbon uptake by vegetation, while the carbon gradient and aerodynamic effects at the surface are secondary. Because of the coupling of CO2 and water vapor exchange through plant stomata, evapotranspiration is also enhanced under thin clouds, albeit to a lesser extent. This effect of diffuse radiation increases the water use efficiency and evaporative fraction under clouds. The dynamic perturbations of the surface fluxes by clouds do not affect general boundary layer or cloud characteristics because of the limited time and space where these perturbations occur. It is concluded that an accurate radiation partitioning calculation is necessary to obtain reliable estimations on local surface processes.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0279.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xabier Pedruzo-Bagazgoitia, xabier.pedruzobagazgoitia@wur.nl

Abstract

Guided by a holistic approach, the combined effects of direct and diffuse radiation on the atmospheric boundary layer dynamics over vegetated land are investigated on a daily scale. Three numerical experiments are designed that are aimed at disentangling the role of diffuse and direct radiation below shallow cumulus at the surface and on boundary layer dynamics. A large-eddy simulation (LES) model coupled to a land surface model is used, including a mechanistically immediate response of plants to radiation, temperature, and water vapor deficit changes. The partitioning in direct and diffuse radiation created by clouds and farther inside the canopy is explicitly accounted for. LES results are conditionally averaged as a function of the cloud optical depth. The findings show larger photosynthesis under thin clouds than under clear sky, due to an increase in diffuse radiation and a slight decrease in direct radiation. The reduced canopy resistance is the main driver for the enhanced carbon uptake by vegetation, while the carbon gradient and aerodynamic effects at the surface are secondary. Because of the coupling of CO2 and water vapor exchange through plant stomata, evapotranspiration is also enhanced under thin clouds, albeit to a lesser extent. This effect of diffuse radiation increases the water use efficiency and evaporative fraction under clouds. The dynamic perturbations of the surface fluxes by clouds do not affect general boundary layer or cloud characteristics because of the limited time and space where these perturbations occur. It is concluded that an accurate radiation partitioning calculation is necessary to obtain reliable estimations on local surface processes.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0279.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xabier Pedruzo-Bagazgoitia, xabier.pedruzobagazgoitia@wur.nl

Supplementary Materials

    • Supplemental Materials (PDF 645.15 KB)
Save