Spatiotemporal Variations in Hydroclimate across the Mediterranean Andes (30°–37°S) since the Early Twentieth Century

Álvaro González-Reyes Instituto de Ciencias de la Tierra, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile

Search for other papers by Álvaro González-Reyes in
Current site
Google Scholar
PubMed
Close
,
James McPhee Departamento de Ingeniería Civil and Advanced Mining Technology Center, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile

Search for other papers by James McPhee in
Current site
Google Scholar
PubMed
Close
,
Duncan A. Christie Laboratorio de Dendrocronología y Cambio Global, Instituto de Conservación Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia, and Center for Climate and Resilience Research (CR)2, Universidad de Chile, Santiago, Chile

Search for other papers by Duncan A. Christie in
Current site
Google Scholar
PubMed
Close
,
Carlos Le Quesne Laboratorio de Dendrocronología y Cambio Global, Instituto de Conservación Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia, Chile

Search for other papers by Carlos Le Quesne in
Current site
Google Scholar
PubMed
Close
,
Paul Szejner Laboratory of Tree-Ring Research, and School of Natural Resources and the Environment, The University of Arizona, Tucson, Arizona

Search for other papers by Paul Szejner in
Current site
Google Scholar
PubMed
Close
,
Mariano H. Masiokas Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CCT CONICET Mendoza, Mendoza, Argentina

Search for other papers by Mariano H. Masiokas in
Current site
Google Scholar
PubMed
Close
,
Ricardo Villalba Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CCT CONICET Mendoza, Mendoza, Argentina

Search for other papers by Ricardo Villalba in
Current site
Google Scholar
PubMed
Close
,
Ariel A. Muñoz Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile

Search for other papers by Ariel A. Muñoz in
Current site
Google Scholar
PubMed
Close
, and
Sebastián Crespo Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CCT CONICET Mendoza, Mendoza, Argentina

Search for other papers by Sebastián Crespo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In the Mediterranean Andes region (MA; 30°–37°S), the main rivers are largely fed by melting snowpack and provide freshwater to around 10 million people on both sides of the Andes Mountains. Water resources in the MA are under pressure because of the extensive development of industrial agriculture and mining activities. This pressure is increasing as the region faces one of its worst recorded droughts. Previous studies have pointed to El Niño–Southern Oscillation (ENSO) as the main climatic force impacting the MA. However, the role of decadal and multidecadal climate variability, their spatial patterns, and the recurrence of long-term droughts remains poorly studied. In an attempt to better understand these factors, spatial and temporal patterns of hydroclimatic variability are analyzed using an extensive database of streamflow, precipitation, and snowpack covering the period between 1910 and 2011. These analyses are based on the combination of correlation, principal components, and kernel estimation techniques. Despite a general common pattern across the MA, the results presented here identify two hydroclimatic subregions, located north and south of 34°S. While the interannual variability associated with ENSO is slightly stronger north of 34°S, the variability associated with the Pacific decadal oscillation (PDO) and/or the interdecadal Pacific oscillation (IPO) index shows similar patterns in both regions. However, variations produced by the IPO forcing seem to be greater in the southern subregion since 1975. The estimations presented here on drought recurrence reveal a generalized increase in dry extremes since the 1950s. These findings suggest that the northern MA is more vulnerable to changes in hydrology and climate than the southern MA.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Álvaro González-Reyes, gonzalezreyesalvaro@gmail.com

Abstract

In the Mediterranean Andes region (MA; 30°–37°S), the main rivers are largely fed by melting snowpack and provide freshwater to around 10 million people on both sides of the Andes Mountains. Water resources in the MA are under pressure because of the extensive development of industrial agriculture and mining activities. This pressure is increasing as the region faces one of its worst recorded droughts. Previous studies have pointed to El Niño–Southern Oscillation (ENSO) as the main climatic force impacting the MA. However, the role of decadal and multidecadal climate variability, their spatial patterns, and the recurrence of long-term droughts remains poorly studied. In an attempt to better understand these factors, spatial and temporal patterns of hydroclimatic variability are analyzed using an extensive database of streamflow, precipitation, and snowpack covering the period between 1910 and 2011. These analyses are based on the combination of correlation, principal components, and kernel estimation techniques. Despite a general common pattern across the MA, the results presented here identify two hydroclimatic subregions, located north and south of 34°S. While the interannual variability associated with ENSO is slightly stronger north of 34°S, the variability associated with the Pacific decadal oscillation (PDO) and/or the interdecadal Pacific oscillation (IPO) index shows similar patterns in both regions. However, variations produced by the IPO forcing seem to be greater in the southern subregion since 1975. The estimations presented here on drought recurrence reveal a generalized increase in dry extremes since the 1950s. These findings suggest that the northern MA is more vulnerable to changes in hydrology and climate than the southern MA.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Álvaro González-Reyes, gonzalezreyesalvaro@gmail.com
Save
  • Aceituno, P., 1988: On the functioning of Southern Oscillation in the South American sector. Part I: Surface climate. Mon. Wea. Rev., 116, 505524, doi:10.1175/1520-0493(1988)116<0505:OTFOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aceituno, P., and F. Vidal, 1990: Variabilidad en el caudal interanual en ríos andinos en Chile central en relación con la temperatura de la superficie del mar en el Pacífico central. Rev. Soc. Chil. Ing. Hidraul., 5, 719.

    • Search Google Scholar
    • Export Citation
  • Aceituno, P., and R. Garreaud, 1995: Impactos de los fenómenos El Niño y La Niña en regímenes fluviométricos andinos. Rev. Soc. Chil. Ing. Hidraul., 10, 3343.

    • Search Google Scholar
    • Export Citation
  • Boisier, J. P., R. Rondanelli, R. D. Garreaud, and F. Muñoz, 2016: Anthropogenic and natural contributions to the southeast Pacific precipitation decline and recent megadrought in central Chile. Geophys. Res. Lett., 43, 413421, doi:10.1002/2015GL067265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bown, F., A. Rivera, and C. Acuña, 2008: Recent glacier variations at the Aconcagua basin, central Chilean Andes. Ann. Glaciol., 48, 4348, doi:10.3189/172756408784700572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrasco, J. F., G. Casassa, and J. Quintana, 2005: Changes of the 0°C isotherm and the equilibrium line altitude in central Chile during the last quarter of the 20th century. Hydrol. Sci. J., 50, 933948, doi:10.1623/hysj.2005.50.6.933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrasco, J. F., R. Osorio, and G. Casassa, 2008: Secular trend of the equilibrium-line altitude on the western side of the southern Andes, derived from radiosonde and surface observations. J. Glaciol., 54, 538550, doi:10.3189/002214308785837002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christie, D. A., and Coauthors, 2011: Aridity changes in the temperate–Mediterranean transition of the Andes since AD 1346 reconstructed from tree-rings. Climate Dyn., 36, 15051521, doi:10.1007/s00382-009-0723-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compagnucci, R. H., and Coauthors, 2000: Variability in subtropical Andean Argentinean Atuel River; A wavelet approach. Environmetrics, 11, 251269, doi:10.1002/(SICI)1099-095X(200005/06)11:3<251::AID-ENV405>3.0.CO;2-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CONAMA, 2006: Climate variability in Chile in the XXI century (in Spanish). Corporación Nacional del Medio Ambiente, accessed 8 August 2016. [Available online at http://dgf.uchile.cl/PRECIS/.]

  • Cortés, G., X. Vargas, and J. McPhee, 2011: Climatic sensitivity of streamflow timing in the extra tropical western Andes Cordillera. J. Hydrol., 405, 93109, doi:10.1016/j.jhydrol.2011.05.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cowling, A., P. Hall, and M. j. Phillips, 1996: Bootstrap confidence regions for the intensity of a Poisson point process. J. Amer. Stat. Assoc., 91, 15161524, doi:10.1080/01621459.1996.10476719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CR2, 2016: The state of drought in Chile this 2016 (in Spanish). Centro de Clima y de Resiliencia, accessed 11 August 2016. [Available online at http://www.cr2.cl/estado-de-la-sequia-2016-en-chile-por-rene-garreaud/.]

  • Escobar, F., and P. Aceituno, 1998: ENSO influence on Andean winter snowfall in central Chile (in Spanish). Bull. Inst. Fr. Études Andines, 27 (3), 753759.

    • Search Google Scholar
    • Export Citation
  • Falvey, M., and R. Garreaud, 2009: Regional cooling in a warming world: Recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J. Geophys. Res., 114, 116, doi:10.1029/2008JD010519.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R., 2009: The Andes climate and weather. Adv. Geosci., 22, 311.

  • Garreaud, R., M. Vuille, R. Compagnucci, and J. Marengo, 2009: Present day South American climate. Palaeogeogr., Palaeoclimatol., Palaeoecol., 281, 180195, doi:10.1016/j.palaeo.2007.10.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • INDEC, 2010: National census, 2010. Instituto Nacional de Estadística y Censos, accessed 9 January 2016. [Available online at http://www.indec.gob.ar/nivel4_default.asp?id_tema_1=2&id_tema_2=41&id_tema_3=135.]

  • INE, 2003: National census, 2002 (in Spanish). Instituto Nacional de Estadísticas, accessed 9 January 2016. [Available online at http://www.ine.cl/cd2002/sintesiscensal.pdf.]

  • Jacques-Coper, M., and R. Garreaud, 2015: Characterization of the 1970s climate shift in South America. Int. J. Climatol., 35, 21642179, doi:10.1002/joc.4120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Quesne, C., C. Acuña, J. Boninsegna, A. Rivera, and J. Barichivich, 2009: Long-term glacier variations in the central Andes of Argentina and Chile, inferred from historical records and tree ring reconstructed precipitation. Palaeogeogr., Palaeoclimatol., Palaeoecol., 281, 334344, doi:10.1016/j.palaeo.2008.01.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lliboutry, L., 1998: Glaciers of the dry Andes. Satellite Image Atlas of Glaciers of the World: South America, R. S. Williams and J. G. Ferrigno, Eds., USGS Professional Paper 1386-I. [Available online at http://pubs.usgs.gov/prof/p1386i/index.html.]

  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 3544, doi:10.1023/A:1015820616384.

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masiokas, M. H., R. Villalba, B. H. Luckman, C. Le Quesne, and J. C. Aravena, 2006: Snowpack variations in the central Andes of Argentina and Chile, 1951–2005: Large-scale atmospheric influences and implications for water resources in the region. J. Climate, 19, 63346352, doi:10.1175/JCLI3969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masiokas, M. H., A. Rivera, L. E. Espizua, R. Villalba, S. Delgado, and J. C. Aravena, 2009: Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeogr., Palaeoclimatol., Palaeoecol., 281, 242268, doi:10.1016/j.palaeo.2009.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masiokas, M. H., R. Villalba, B. H. Luckman, and S. Mauget, 2010: Intra- to multidecadal variations of snowpack and streamflow records in the Andes of Chile and Argentina between 30° and 37°S. J. Hydrometeor., 11, 822831, doi:10.1175/2010JHM1191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masiokas, M. H., R. Villalba, B. H. Luckman, E. Montaña, E. Betman, D. A. Christie, C. Le Quesne, and S. Mauget, 2013: Recent and historic Andean snowpack and streamflow variations and vulnerability to water shortages in central-western Argentina. Vulnerability of Water Resources to Climate, Vol. 5, Climate Vulnerability: Understanding and Addressing Threats to Essential Resources, R. A. Pielke, Ed., Elsevier, 213–227, doi:10.1016/B978-0-12-384703-4.00522-0.

    • Crossref
    • Export Citation
  • McCabe, G., and M. Dettinger, 1999: Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States. Int. J. Climatol., 19, 13991410, doi:10.1002/(SICI)1097-0088(19991115)19:13<1399::AID-JOC457>3.0.CO;2-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G., and M. Palecki, 2006: Multidecadal climate variability of global lands and oceans. Int. J. Climatol., 26, 849865, doi:10.1002/joc.1289.

  • Meza, F., 2013: Recent trends and ENSO influence on droughts in northern Chile: An application of the standardized precipitation evapotranspiration index. Wea. Climate Extremes, 1, 5158, doi:10.1016/j.wace.2013.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, A., 1976: The climate of Chile. Climates of Central and South America, Vol. 12, World Survey of Climatology, W. Schwerdtfeger, Ed., Elsevier, 113–131.

  • Montecinos, A., and P. Aceituno, 2003: Seasonality of the ENSO-related rainfall variability in central Chile and associated circulation anomalies. J. Climate, 16, 281296, doi:10.1175/1520-0442(2003)016<0281:SOTERR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montecinos, A., M. V. Kurgansk, C. Muñoz, and K. Takahashi, 2011: Non-ENSO interannual rainfall variability in central Chile during austral winter. Theor. Appl. Climatol., 106, 557568, doi:10.1007/s00704-011-0457-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz, A., and Coauthors, 2016: Streamflow variability in the Chilean temperate–Mediterranean climate transition (35°S–42°S) during the last 400 years inferred from tree-ring records. Climate Dyn., 47, 40514066, doi:10.1007/s00382-016-3068-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Núñez, J. H., K. Verbist, J. R. Wallis, M. G. Schaefer, L. Morales, and W. M. Cornelis, 2011: Regional frequency analysis for mapping drought events in north-central Chile. J. Hydrol., 405, 352366, doi:10.1016/j.jhydrol.2011.05.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, doi:10.1007/s003820050284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quintana, J. M., and P. Aceituno, 2012: Changes in the rainfall regime along the extratropical west coast of South America (Chile): 30°–43°S. Atmósfera, 25, 122.

    • Search Google Scholar
    • Export Citation
  • R Core Team, 2016: R: A language and environment for statistical computing. R Foundation for Statistical Computing, accessed 10 January 2017. [Available online at www.R-project.org.]

  • Rubio-Álvarez, E., and J. McPhee, 2010: Patterns of spatial and temporal variability in streamflow records in south central Chile in the period 1952–2003. Water Resour. Res., 46, W05514, doi:10.1029/2009WR007982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutllant, J., and H. Fuenzalida, 1991: Synoptic aspects of the central Chile rainfall variability associated with the Southern Oscillation. Int. J. Climatol., 11, 6376, doi:10.1002/joc.3370110105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, doi:10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vera, C., and Coauthors, 2006: Toward a unified view of the American monsoon systems. J. Climate, 19, 49775000, doi:10.1175/JCLI3896.1.

  • Villalba, R., and Coauthors, 2012: Unusual Southern Hemisphere tree growth patterns induced by changes in the southern annular mode. Nat. Geosci., 5, 793798, doi:10.1038/ngeo1613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuille, M., and J. P. Milana, 2007: High-latitude forcing of regional aridification along the subtropical west coast of South America. Geophys. Res. Lett., 34, L23703, doi:10.1029/2007GL031899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 676 pp.

  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 566 207 9
PDF Downloads 353 114 3