Predicting U.S. Drought Monitor States Using Precipitation, Soil Moisture, and Evapotranspiration Anomalies. Part I: Development of a Nondiscrete USDM Index

David J. Lorenz Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by David J. Lorenz in
Current site
Google Scholar
PubMed
Close
,
Jason A. Otkin Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Jason A. Otkin in
Current site
Google Scholar
PubMed
Close
,
Mark Svoboda National Drought Mitigation Center, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Mark Svoboda in
Current site
Google Scholar
PubMed
Close
,
Christopher R. Hain Earth Science Branch, NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Christopher R. Hain in
Current site
Google Scholar
PubMed
Close
,
Martha C. Anderson Hydrology and Remote Sensing Laboratory, Agricultural Research Services, U.S. Department of Agriculture, Beltsville, Maryland

Search for other papers by Martha C. Anderson in
Current site
Google Scholar
PubMed
Close
, and
Yafang Zhong Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Yafang Zhong in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The U.S. Drought Monitor (USDM) classifies drought into five discrete dryness/drought categories based on expert synthesis of numerous data sources. In this study, an empirical methodology is presented for creating a nondiscrete USDM index that simultaneously 1) represents the dryness/wetness value on a continuum and 2) is most consistent with the time scales and processes of the actual USDM. A continuous USDM representation will facilitate USDM forecasting methods, which will benefit from knowledge of where, within a discrete drought class, the current drought state most probably lies. The continuous USDM is developed such that the actual discrete USDM can be reconstructed by discretizing the continuous USDM based on the 30th, 20th, 10th, 5th, and 2nd percentiles—corresponding with USDM definitions for the D4–D0 drought classes. Anomalies in precipitation, soil moisture, and evapotranspiration over a range of different time scales are used as predictors to estimate the continuous USDM. The methodology is fundamentally probabilistic, meaning that the probability density function (PDF) of the continuous USDM is estimated and therefore the degree of uncertainty in the fit is properly characterized. Goodness-of-fit metrics and direct comparisons between the actual and predicted USDM analyses during different seasons and years indicate that this objective drought classification method is well correlated with the current USDM analyses. In Part II, this continuous USDM index will be used to improve intraseasonal USDM intensification forecasts because it is capable of distinguishing between USDM states that are either far from or near to the next-higher drought category.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David J. Lorenz, dlorenz@wisc.edu

Abstract

The U.S. Drought Monitor (USDM) classifies drought into five discrete dryness/drought categories based on expert synthesis of numerous data sources. In this study, an empirical methodology is presented for creating a nondiscrete USDM index that simultaneously 1) represents the dryness/wetness value on a continuum and 2) is most consistent with the time scales and processes of the actual USDM. A continuous USDM representation will facilitate USDM forecasting methods, which will benefit from knowledge of where, within a discrete drought class, the current drought state most probably lies. The continuous USDM is developed such that the actual discrete USDM can be reconstructed by discretizing the continuous USDM based on the 30th, 20th, 10th, 5th, and 2nd percentiles—corresponding with USDM definitions for the D4–D0 drought classes. Anomalies in precipitation, soil moisture, and evapotranspiration over a range of different time scales are used as predictors to estimate the continuous USDM. The methodology is fundamentally probabilistic, meaning that the probability density function (PDF) of the continuous USDM is estimated and therefore the degree of uncertainty in the fit is properly characterized. Goodness-of-fit metrics and direct comparisons between the actual and predicted USDM analyses during different seasons and years indicate that this objective drought classification method is well correlated with the current USDM analyses. In Part II, this continuous USDM index will be used to improve intraseasonal USDM intensification forecasts because it is capable of distinguishing between USDM states that are either far from or near to the next-higher drought category.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David J. Lorenz, dlorenz@wisc.edu
Save
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp. [Available online at www.fao.org/docrep/X0490E/X0490E00.htm.]

  • Anderson, M. C., J. M. Norman, G. R. Diak, W. P. Kustas, and J. R. Mecikalski, 1997: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ., 60, 195216, doi:10.1016/S0034-4257(96)00215-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., W. P. Kustas, and J. M. Norman, 2007a: Upscaling flux observations from local to continental scales using thermal remote sensing. Agron. J., 99, 240254, doi:10.2134/agronj2005.0096S.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., J. M. Norman, J. R. Mecikalski, J. A. Otkin, and W. P. Kustas, 2007b: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J. Geophys. Res., 112, D10117, doi:10.1029/2006JD007506.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., C. Hain, J. A. Otkin, X. Zhan, K. Mo, M. Svoboda, B. Wardlow, and A. Pimstein, 2013: An intercomparison of drought indicators based on thermal remote sensing and NLDAS simulations. J. Hydrometeor., 14, 10351056, doi:10.1175/JHM-D-12-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AON Benfield, 2013: Annual global climate and catastrophe report: Impact forecasting—2012. Tech Rep., 96 pp. [Available online at http://thoughtleadership.aonbenfield.com/Documents/20130124_if_annual_global_climate_catastrophe_report.pdf.]

  • Barlage, M., and Coauthors, 2010: Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains. J. Geophys. Res., 115, D22101, doi:10.1029/2009JD013470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowling, L. C., and D. P. Lettenmaier, 2010: Modeling the effects of lakes and wetlands on the water balance of Arctic environments. J. Hydrometeor., 11, 276295, doi:10.1175/2009JHM1084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fannin, B., 2012: Updated 2011 Texas agricultural drought losses total $7.62 billion. Texas A&M Agrilife, accessed 2015. [Available online at http://today.agrilife.org/2012/03/21/updated-2011-texas-agricultural-drought-losses-total-7-62-billion/.]

  • Franc, V., V. Hlaváč, and M. Navara, 2005: Sequential coordinate-wise algorithm for the non-negative least squares problem. CAIP 2005: Computer Analysis of Images and Patterns, Lecture Notes in Computer Science, Vol. 3691, Springer, 407–414, doi:10.1007/11556121_50.

    • Crossref
    • Export Citation
  • Hacker, R., 1962: Certification of algorithm 112: Position of point relative to polygon. Commun. ACM, 5, 606, doi:10.1145/355580.369118.

  • Hain, C. R., W. T. Crow, M. C. Anderson, and M. T. Yilmaz, 2015: Diagnosing neglected soil moisture source–sink processes via a thermal infrared–based two-source energy balance model. J. Hydrometeor., 16, 10701086, doi:10.1175/JHM-D-14-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hao, Z., Y. Hong, Y. Xia, V. P. Singh, F. Hao, and H. Cheng, 2016: Probabilistic drought characterization in the categorical form using ordinal regression. J. Hydrol., 535, 331339, doi:10.1016/j.jhydrol.2016.01.074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., W. Shi, E. Yarosh, and R. Joyce, 2000: Improved United States precipitation quality control system and analysis. NCEP/Climate Prediction Center Atlas 7, NOAA, 40 pp. [Available online at http://www.cpc.ncep.noaa.gov/research_papers/ncep_cpc_atlas/7/toc.html.]

  • Howitt, R. D. MacEwan, J. Medellín-Azuara, J. Lund, and D. Sumner, 2015: Economic analysis of the 2015 drought for California agriculture. University of California, Davis Tech. Rep., 16 pp. [Available online at https://watershed.ucdavis.edu/files/biblio/Final_Drought%20Report_08182015_Full_Report_WithAppendices.pdf.]

  • Hunt, E., M. Svoboda, B. Wardlow, K. Hubbard, M. J. Hayes, and T. Arkebauer, 2014: Monitoring the effects of rapid onset of drought on non-irrigated maize with agronomic data and climate-based drought indices. Agric. For. Meteor., 191, 111, doi:10.1016/j.agrformet.2014.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 1994: The components of a SVAT scheme and their effects on a GCM’s hydrological cycle. Adv. Water Resour., 17, 6178, doi:10.1016/0309-1708(94)90024-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 1996: Energy and water balance calculations in the Mosaic LSM. NASA Tech. Memo. 104606, Vol. 9, 60 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Koster130.pdf.]

  • Liang, X., E. F. Wood, and D. P. Lettenmaier, 1996: Surface and soil moisture parameterization of the VIC-2L model: Evaluation and modifications. Global Planet. Change, 13, 195206, doi:10.1016/0921-8181(95)00046-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., J. A. Otkin, M. Svoboda, C. R. Hain, M. C. Anderson, and Y. Zhong, 2017: Predicting the U.S. Drought Monitor using precipitation, soil moisture, and evapotranspiration anomalies. Part II: Intraseasonal drought intensification forecasts. J. Hydrometeor., 18, 19631982, doi:10.1175/JHM-D-16-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scale. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184.

  • McKee, T. B., N. J. Doesken, and J. Kleist, 1995: Drought monitoring with multiple time scales. Preprints, Ninth Conf. on Applied Climatology, Dallas, TX, Amer. Meteor. Soc., 233–236.

  • McNaughton, K. G., and T. W. Spriggs, 1986: A mixed-layer model for regional evaporation. Bound.-Layer Meteor., 34, 243262, doi:10.1007/BF00122381.

  • Meinshausen, N., 2013: Sign-constrained least squares estimation for high-dimensional regression. Electron. J. Stat., 7, 16071631, doi:10.1214/13-EJS818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mozny, M., M. Trnka, Z. Zalud, P. Hlavinka, J. Nekovar, V. Potop, and M. Virag, 2012: Use of a soil moisture network for drought monitoring in the Czech Republic. Theor. Appl. Climatol., 107, 99111, doi:10.1007/s00704-011-0460-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myneni, R. B., and Coauthors, 2002: Global products of vegetation leaf area and fraction absorbed by PAR from year of MODIS data. Remote Sens. Environ., 83, 214231, doi:10.1016/S0034-4257(02)00074-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norman, J. M., W. P. Kustas, and K. S. Humes, 1995: A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature. Agric. For. Meteor., 77, 263292, doi:10.1016/0168-1923(95)02265-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NRDC 2013: Record-breaking $17.3 billion in crop losses last year; Significant portion potentially avoidable. Natural Resources Defense Council, accessed 25 May 2017. [Available online at https://www.nrdc.org/media/2013/130827.]

  • Otkin, J. A., M. C. Anderson, C. Hain, I. Mladenova, J. Basara, and M. Svoboda, 2013: Examining flash drought development using the thermal infrared based evaporative stress index. J. Hydrometeor., 14, 10571074, doi:10.1175/JHM-D-12-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. C. Anderson, C. Hain, and M. Svoboda, 2014: Examining the relationship between drought development and rapid changes in the evaporative stress index. J. Hydrometeor., 15, 938956, doi:10.1175/JHM-D-13-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. C. Anderson, C. Hain, and M. Svoboda, 2015: Using temporal changes in drought indices to generate probabilistic drought intensification forecasts. J. Hydrometeor., 16, 88105, doi:10.1175/JHM-D-14-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., and Coauthors, 2016: Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought. Agric. For. Meteor., 218–219, 230242, doi:10.1016/j.agrformet.2015.12.065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, 1992: Numerical Recipes in Fortran 77: The Art of Scientific Computing. 2nd ed. Cambridge University Press, 933 pp.

  • Saha, S., and Coauthors, 2010: The NCEP Climate System Forecast Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimrat, M., 1962: Algorithm 112: Position of point relative to polygon. Commun. ACM, 5, 434, doi:10.1145/368637.368653.

  • Slawski, M., and M. Hein, 2013: Non-negative least squares for high-dimensional linear models: Consistency and sparse recovery without regularization. Electron. J. Stat., 7, 30043056, doi:10.1214/13-EJS868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, doi:10.1175/1520-0477(2002)083<1181:TDM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, H., Y. Xia, K. E. Mitchell, and M. B. Ek, 2013: Improvement of the Noah land surface model for warm season processes: Evaluation of water and energy flux simulation. Hydrol. Processes, 27, 297303, doi:10.1002/hyp.9214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., and M. H. Glantz, 1985: Understanding the drought phenomenon: The Role of definitions. Water Int., 10, 111120, doi:10.1080/02508068508686328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Xia, Y., M. B. Ek, H. Wei, and J. Meng, 2012a: Comparative analysis of relationships between NLDAS-2 forcings and model outputs. Hydrol. Processes, 26, 467474, doi:10.1002/hyp.8240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012b: Continental-scale water and energy flux analysis and validation of the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., J. Sheffield, M. B. Ek, J. Dong, N. Chaney, H. Wei, J. Meng, and E. F. Wood, 2014: Evaluation of multi-model simulated soil moisture in NLDAS-2. J. Hydrol., 512, 107125, doi:10.1016/j.jhydrol.2014.02.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 947 307 21
PDF Downloads 680 230 12