Predicting the U.S. Drought Monitor Using Precipitation, Soil Moisture, and Evapotranspiration Anomalies. Part II: Intraseasonal Drought Intensification Forecasts

David J. Lorenz Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by David J. Lorenz in
Current site
Google Scholar
PubMed
Close
,
Jason A. Otkin Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Jason A. Otkin in
Current site
Google Scholar
PubMed
Close
,
Mark Svoboda National Drought Mitigation Center, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Mark Svoboda in
Current site
Google Scholar
PubMed
Close
,
Christopher R. Hain Earth Science Branch, NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Christopher R. Hain in
Current site
Google Scholar
PubMed
Close
,
Martha C. Anderson Hydrology and Remote Sensing Laboratory, Agricultural Research Services, U.S. Department of Agriculture, Beltsville, Maryland

Search for other papers by Martha C. Anderson in
Current site
Google Scholar
PubMed
Close
, and
Yafang Zhong Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Yafang Zhong in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Probabilistic forecasts of U.S. Drought Monitor (USDM) intensification over 2-, 4-, and 8-week time periods are developed based on recent anomalies in precipitation, evapotranspiration, and soil moisture. These statistical forecasts are computed using logistic regression with cross validation. While recent precipitation, evapotranspiration, and soil moisture do provide skillful forecasts, it is found that additional information on the current state of the USDM adds significant skill to the forecasts. The USDM state information takes the form of a metric that quantifies the “distance” from the next-higher drought category using a nondiscrete estimate of the current USDM state. This adds skill because USDM states that are close to the next-higher drought category are more likely to intensify than states that are farther from this threshold. The method shows skill over most of the United States but is most skillful over the north-central United States, where the cross-validated Brier skill score averages 0.20 for both 2- and 4-week forecasts. The 8-week forecasts are less skillful in most locations. The 2- and 4-week probabilities have very good reliability. The 8-week probabilities, on the other hand, are noticeably overconfident. For individual drought events, the method shows the most skill when forecasting high-amplitude flash droughts and when large regions of the United States are experiencing intensifying drought.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David J. Lorenz, dlorenz@wisc.edu

Abstract

Probabilistic forecasts of U.S. Drought Monitor (USDM) intensification over 2-, 4-, and 8-week time periods are developed based on recent anomalies in precipitation, evapotranspiration, and soil moisture. These statistical forecasts are computed using logistic regression with cross validation. While recent precipitation, evapotranspiration, and soil moisture do provide skillful forecasts, it is found that additional information on the current state of the USDM adds significant skill to the forecasts. The USDM state information takes the form of a metric that quantifies the “distance” from the next-higher drought category using a nondiscrete estimate of the current USDM state. This adds skill because USDM states that are close to the next-higher drought category are more likely to intensify than states that are farther from this threshold. The method shows skill over most of the United States but is most skillful over the north-central United States, where the cross-validated Brier skill score averages 0.20 for both 2- and 4-week forecasts. The 8-week forecasts are less skillful in most locations. The 2- and 4-week probabilities have very good reliability. The 8-week probabilities, on the other hand, are noticeably overconfident. For individual drought events, the method shows the most skill when forecasting high-amplitude flash droughts and when large regions of the United States are experiencing intensifying drought.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David J. Lorenz, dlorenz@wisc.edu
Save
  • Anderson, M. C., J. M. Norman, G. R. Diak, W. P. Kustas, and J. R. Mecikalski, 1997: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ., 60, 195216, doi:10.1016/S0034-4257(96)00215-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., J. M. Norman, J. R. Mecikalski, J. A. Otkin, and W. P. Kustas, 2007: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J. Geophys. Res., 112, D10117, doi:10.1029/2006JD007506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and G. J. Bowden, 2008: Toward long-lead operational forecasts of drought: An experimental study in the Murray–Darling River basin. J. Hydrol., 357, 349367, doi:10.1016/j.jhydrol.2008.05.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, V. A., H. N. Davies, A. L. Kay, T. J. Marsh, A. Brookshaw, and A. Jenkins, 2013: Developing a large-scale water-balance approach to seasonal forecasting: Application to the 2012 drought in Britain. Hydrol. Processes, 27, 30033012, doi:10.1002/hyp.9863.

    • Search Google Scholar
    • Export Citation
  • Dobson, A. J., and A. Barnett, 2008: An Introduction to Generalized Linear Models. CRC Press, 320 pp.

    • Crossref
    • Export Citation
  • Dutra, E., and Coauthors, 2014: Global meteorological drought—Part 2: Seasonal forecasts. Hydrol. Earth Syst. Sci., 18, 26692678, doi:10.5194/hess-18-2669-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., W. Shi, E. Yarosh, and R. Joyce, 2000: Improved United States precipitation quality control system and analysis. NCEP/Climate Prediction Center Atlas 7, NOAA, 40 pp. [Available online at http://www.cpc.ncep.noaa.gov/research_papers/ncep_cpc_atlas/7/toc.html.]

  • Hoerling, M., J. Eischeid, A. Kumar, R. Leung, A. Mariotti, K. Mo, S. Schubert, and R. Seager, 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, doi:10.1175/BAMS-D-13-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, E., M. Svoboda, B. Wardlow, K. Hubbard, M. J. Hayes, and T. Arkebauer, 2014: Monitoring the effects of rapid onset of drought on non-irrigated maize with agronomic data and climate-based drought indices. Agric. For. Meteor., 191, 111, doi:10.1016/j.agrformet.2014.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y., and G. Carbone, 2009: Ensemble forecasts of drought indices using a conditional resampling technique. J. Appl. Meteor., 48, 12891301, doi:10.1175/2009JAMC2071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, T. W., J. B. Valdes, and C. Yoo, 2003: Nonparametric approach for estimating return periods of droughts in arid regions. J. Hydrol. Eng., 8, 237246, doi:10.1061/(ASCE)1084-0699(2003)8:5(237).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, doi:10.1175/BAMS-D-12-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., M. Chen, M. Hoerling, and J. Eischeid, 2013: Do extreme climate events require extreme forcings? Geophys. Res. Lett., 40, 34403445, doi:10.1002/grl.50657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., J. A. Otkin, M. Svoboda, C. R. Hain, M. C. Anderson, and Y. Zhong, 2017: Predicting U.S. Drought Monitor states using precipitation, soil moisture, and evapotranspiration anomalies. Part I: Development of a nondiscrete USDM index. J. Hydrometeor., 18, 19431962, doi:10.1175/JHM-D-16-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, L., E. F. Wood, and M. Pan, 2007: Bayesian merging of multiple climate model forecasts for seasonal hydrological predictions. J. Geophys. Res., 112, D10102, doi:10.1029/2006JD007655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McEvoy, D. J., J. L. Huntington, J. F. Mejia, and M. T. Hobbins, 2016: Improved seasonal drought forecasts using reference evapotranspiration anomalies. Geophys. Res. Lett., 43, 377385, doi:10.1002/2015GL067009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinshausen, N., 2013: Sign-constrained least squares estimation for high-dimensional regression. Electron. J. Stat., 7, 16071631, doi:10.1214/13-EJS818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, V. R., and A. K. Desai, 2005: Drought forecasting using stochastic models. Stochastic Environ. Res. Risk Assess., 19, 326339, doi:10.1007/s00477-005-0238-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, V. R., and A. K. Desai, 2006: Drought forecasting using feed-forward recursive neural network. Ecol. Modell., 198, 127138, doi:10.1016/j.ecolmodel.2006.04.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and B. Lyon, 2015: Global meteorological drought prediction using the North American Multi-Model Ensemble. J. Hydrometeor., 16, 14091424, doi:10.1175/JHM-D-14-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mozny, M., M. Trnka, Z. Zalud, P. Hlavinka, J. Nekovar, V. Potop, and M. Virag, 2012: Use of a soil moisture network for drought monitoring in the Czech Republic. Theor. Appl. Climatol., 107, 99111, doi:10.1007/s00704-011-0460-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. C. Anderson, C. Hain, I. Mladenova, J. Basara, and M. Svoboda, 2013: Examining flash drought development using the thermal infrared based evaporative stress index. J. Hydrometeor., 14, 10571074, doi:10.1175/JHM-D-12-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. C. Anderson, C. Hain, and M. Svoboda, 2014: Examining the relationship between drought development and rapid changes in the evaporative stress index. J. Hydrometeor., 15, 938956, doi:10.1175/JHM-D-13-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. C. Anderson, C. Hain, and M. Svoboda, 2015a: Using temporal changes in drought indices to generate probabilistic drought intensification forecasts. J. Hydrometeor., 16, 88105, doi:10.1175/JHM-D-14-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., and Coauthors, 2015b: Facilitating the use of drought early warning information through interactions with agricultural stakeholders. Bull. Amer. Meteor. Soc., 96, 10731078, doi:10.1175/BAMS-D-14-00219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Özger, M., A. K. Mishra, and V. P. Singh, 2012: Long lead time drought forecasting using a wavelet and fuzzy logic combination model: A case study in Texas. J. Hydrometeor., 13, 284297, doi:10.1175/JHM-D-10-05007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, M., X. Yuan, and E. F. Wood, 2013: A probabilistic framework for assessing drought recovery. Geophys. Res. Lett., 40, 36373642, doi:10.1002/grl.50728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, X.-W., M. P. Hoerling, B. Lyon, A. Kumar, M. A. Bell, M. K. Tippett, and H. Wang, 2012: Prospects for dynamical prediction of meteorological drought. J. Appl. Meteor. Climatol., 51, 12381252, doi:10.1175/JAMC-D-11-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, Z., and V. K. Boken, 2005: Techniques to predict agricultural droughts. Monitoring and Predicting Agricultural Drought, V. K. Boken, A. P. Cracknell, and R. L. Heathcote, Eds., Oxford University Press, 40–54.

    • Crossref
    • Export Citation
  • Slawski, M., and M. Hein, 2013: Non-negative least squares for high-dimensional linear models: Consistency and sparse recovery without regularization. Electron. J. Stat., 7, 30043056, doi:10.1214/13-EJS868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinemann, A., 2003: Drought indicators and triggers: A stochastic approach to evaluation. J. Amer. Water Resour. Assoc., 39, 12171233, doi:10.1111/j.1752-1688.2003.tb03704.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, doi:10.1175/1520-0477(2002)083<1181:TDM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thober, S., R. Kumar, J. Sheffield, J. Mai, D. Schäfer, and L. Samaniego, 2015: Seasonal soil moisture drought prediction over Europe using the North American Multi-Model Ensemble (NMME). J. Hydrometeor., 16, 23292344, doi:10.1175/JHM-D-15-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., and M. H. Glantz, 1985: Understanding the drought phenomenon: The role of definitions. Water Int., 10, 111120, doi:10.1080/02508068508686328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Wood, A. W., E. P. Maurer, A. Kumar, and D. P. Lettenmaier, 2002: Long range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res., 107, 4429, doi:10.1029/2001JD000659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., M. B. Ek, H. Wei, and J. Meng, 2012a: Comparative analysis of relationships between NLDAS-2 forcings and model outputs. Hydrol. Processes, 26, 467474, doi:10.1002/hyp.8240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012b: Continental-scale water and energy flux analysis and validation of the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., and E. F. Wood, 2013: Multimodel seasonal forecasting of global drought onset. Geophys. Res. Lett., 40, 49004905, doi:10.1002/grl.50949.

  • Yuan, X., E. F. Wood, N. W. Chaney, J. Sheffield, J. Kam, M. Liang, and K. Guan, 2013a: Probabilistic seasonal forecasting of African drought by dynamic models. J. Hydrometeor., 14, 17061720, doi:10.1175/JHM-D-13-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., E. F. Wood, J. K. Roundy, and M. Pan, 2013b: CFSv2-based seasonal hydroclimatic forecasts over the conterminous United States. J. Climate, 26, 48284847, doi:10.1175/JCLI-D-12-00683.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 628 186 13
PDF Downloads 394 124 6