Vineyard Energy Partitioning Between Canopy and Soil Surface: Dynamics and Biophysical Controls

Peng Zhao Center for Agricultural Water Research in China, China Agricultural University, Beijing, China

Search for other papers by Peng Zhao in
Current site
Google Scholar
PubMed
Close
,
Xiaotao Zhang Center for Agricultural Water Research in China, China Agricultural University, Beijing, China

Search for other papers by Xiaotao Zhang in
Current site
Google Scholar
PubMed
Close
,
Sien Li Center for Agricultural Water Research in China, China Agricultural University, Beijing, China

Search for other papers by Sien Li in
Current site
Google Scholar
PubMed
Close
, and
Shaozhong Kang Center for Agricultural Water Research in China, China Agricultural University, Beijing, China

Search for other papers by Shaozhong Kang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

For sparse planting crops, soil surface plays an important role in energy balance processes within the soil–canopy–atmosphere continuum; thus, it is necessary to partition field energy fluxes into soil surface and canopy to provide useful information to reduce agricultural water use and to develop evapotranspiration models. Field experiments were conducted in vineyards during four growing seasons to examine the energy partitioning among soil surface, canopy, and field separately. Vineyard energy fluxes including latent heat (LE) were measured by eddy covariance system and canopy latent heat LEc was obtained from sap flow. Then, soil surface latent heat LEs was calculated as the difference between LE and LEc. The Bowen ratio and the ratio of latent heat to available energy were used to examine energy partitioning. Results indicate daily and hourly LEs obtained from LE and LEc overestimated microlysimeter-derived values by 13.0% and 10.8%, respectively. Seasonal-average latent heat accounted for 59.0%–64.3%, 65.8%–77.8%, and 56.6%–62.5% of corresponding available energy for vineyard, canopy, and soil surface, respectively. Soil water content and canopy were the main controlling factors on energy partitioning. Surface soil moisture explained 32%, 11%, and 52% of the seasonal variability in energy partitioning at field, canopy, and soil surface, respectively. Leaf area index explained 41% and 26% of the seasonal variability in energy partitioning at field and soil surface. Air temperature was related to canopy and field energy partitioning. During wet periods, soil can absorb sensible heat from the canopy and LEs may exceed soil surface available energy, while during dry periods, the canopy may absorb sensible heat from the soil and LEc may exceed canopy available energy.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Shaozhong Kang, kangsz@cau.edu.cn

Abstract

For sparse planting crops, soil surface plays an important role in energy balance processes within the soil–canopy–atmosphere continuum; thus, it is necessary to partition field energy fluxes into soil surface and canopy to provide useful information to reduce agricultural water use and to develop evapotranspiration models. Field experiments were conducted in vineyards during four growing seasons to examine the energy partitioning among soil surface, canopy, and field separately. Vineyard energy fluxes including latent heat (LE) were measured by eddy covariance system and canopy latent heat LEc was obtained from sap flow. Then, soil surface latent heat LEs was calculated as the difference between LE and LEc. The Bowen ratio and the ratio of latent heat to available energy were used to examine energy partitioning. Results indicate daily and hourly LEs obtained from LE and LEc overestimated microlysimeter-derived values by 13.0% and 10.8%, respectively. Seasonal-average latent heat accounted for 59.0%–64.3%, 65.8%–77.8%, and 56.6%–62.5% of corresponding available energy for vineyard, canopy, and soil surface, respectively. Soil water content and canopy were the main controlling factors on energy partitioning. Surface soil moisture explained 32%, 11%, and 52% of the seasonal variability in energy partitioning at field, canopy, and soil surface, respectively. Leaf area index explained 41% and 26% of the seasonal variability in energy partitioning at field and soil surface. Air temperature was related to canopy and field energy partitioning. During wet periods, soil can absorb sensible heat from the canopy and LEs may exceed soil surface available energy, while during dry periods, the canopy may absorb sensible heat from the soil and LEc may exceed canopy available energy.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Shaozhong Kang, kangsz@cau.edu.cn
Save
  • Agam, N., and Coauthors, 2010: Application of the Priestley–Taylor approach in a two-source surface energy balance model. J. Hydrometeor., 11, 185198, doi:10.1175/2009JHM1124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agam, N., W. P. Kustas, S. R. Evett, P. D. Colaizzi, M. Cosh, and L. G. McKee, 2012a: Soil heat flux variability influenced by row direction in irrigated cotton. Adv. Water Resour., 50, 3140, doi:10.1016/j.advwatres.2012.07.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agam, N., and Coauthors, 2012b: Evaporative loss from irrigated interrows in a highly advective semi-arid agricultural area. Adv. Water Resour., 50, 2030, doi:10.1016/j.advwatres.2012.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aminzadeh, M., and D. Or, 2014: Energy partitioning dynamics of drying terrestrial surfaces. J. Hydrol., 519, 12571270, doi:10.1016/j.jhydrol.2014.08.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D. D., B. E. Law, and P. M. Anthoni, 2000: On measuring and modeling energy fluxes above the floor of a homogeneous and heterogeneous conifer forest. Agric. For. Meteor., 102, 187206, doi:10.1016/S0168-1923(00)00098-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barr, J. G., M. S. DeLonge, and J. D. Fuentes, 2014: Seasonal evapotranspiration patterns in mangrove forests. J. Geophys. Res. Atmos., 119, 38863899, doi:10.1002/2013JD021083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracho, R., T. L. Powell, S. Dore, J. H. Li, C. R. Hinkle, and B. G. Drake, 2008: Environmental and biological controls on water and energy exchange in Florida scrub oak and pine flatwoods ecosystems. J. Geophys. Res., 113, G02004, doi:10.1029/2007JG000469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenner, A. J., and L. D. Incoll, 1997: The effect of clumping and stomatal response on evaporation from sparsely vegetated shrub-lands. Agric. For. Meteor., 84, 187205, doi:10.1016/S0168-1923(96)02368-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burba, G. G., and S. B. Verma, 2005: Seasonal and interannual variability in evapotranspiration of native tallgrass prairie and cultivated wheat ecosystems. Agric. For. Meteor., 135, 190201, doi:10.1016/j.agrformet.2005.11.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cellier, P., G. Richard, and P. Robin, 1996: Partition of sensible heat fluxes into bare soil and the atmosphere. Agric. For. Meteor., 82, 245265, doi:10.1016/0168-1923(95)02328-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colaizzi, P. D., and Coauthors, 2016: Advances in a two-source energy balance model: Partitioning of evaporation and transpiration for cotton. Trans. ASABE, 59, 181197, doi:10.13031/trans.59.11215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R. S., S. Z. Kang, F. S. Li, Y. Q. Zhang, L. Tong, and Q. Y. Sun, 2010: Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest China. Agric. Water Manage., 98, 8795, doi:10.1016/j.agwat.2010.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eberbach, P., and M. Pala, 2005: Crop row spacing and its influence on the partitioning of evapotranspiration by winter-grown wheat in Northern Syria. Plant Soil, 268, 195208, doi:10.1007/s11104-004-0271-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Er-Raki, S., A. Chehbouni, J. Hoedjes, J. Ezzahar, B. Duchemin, and F. Jacob, 2008: Improvement of FAO-56 method for olive orchards through sequential assimilation of thermal infrared-based estimates of ET. Agric. Water Manage., 95, 309321, doi:10.1016/j.agwat.2007.10.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falge, E., and Coauthors, 2001: Gap filling strategies for long term energy flux data sets. Agric. For. Meteor., 107, 7177, doi:10.1016/S0168-1923(00)00235-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., R. Clement, Y. Malhi, R. Leuning, and H. A. Cleugh, 2003: A re-evaluation of long-term flux measurement techniques. Part I: Averaging and coordinate rotation. Bound.-Layer Meteor., 107, 148, doi:10.1023/A:1021554900225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • German, E. R., 2000: Regional evaluation of evapotranspiration in the Everglades. USGS Water-Resources Investigations Rep. 00-4217, 48 pp. [Available online at https://fl.water.usgs.gov/PDF_files/wri00_4217_german.pdf.]

  • Gharsallah, O., A. Facchi, and C. Gandolfi, 2013: Comparison of six evapotranspiration models for a surface irrigated maize agro-ecosystem in Northern Italy. Agric. Water Manage., 130, 119130, doi:10.1016/j.agwat.2013.08.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gondim, P. S. D. S., J. R. D. S. Lima, A. C. D. Antonino, C. Hammecker, R. A. B. Silva, and C. A. Gomes, 2015: Environmental control on water vapour and energy exchanges over grasslands in semiarid region of Brazil. Rev. Bras. Eng. Agric. Ambient., 19, 38, doi:10.1590/1807-1929/agriambi.v19n1p3-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, J. M., and J. L. Heilman, 1991: Aerodynamic and surface resistances affecting energy transport in a sparse crop. Agric. For. Meteor., 53, 267284, doi:10.1016/0168-1923(91)90047-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, J. M., J. L. Heilman, and R. J. Lascano, 1990: Determination of soil water evaporation and transpiration from energy balance and stem flow measurements. Agric. For. Meteor., 52, 287301, doi:10.1016/0168-1923(90)90087-M.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, J. M., J. L. Heilman, and R. J. Lascano, 1991: Soil and canopy energy balances of a row crop at partial cover. Agron. J., 83, 744753, doi:10.2134/agronj1991.00021962008300040019x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heilman, J. L., K. J. McInnes, M. J. Savage, R. W. Gesch, and R. J. Lascano, 1994: Soil and canopy energy balances in a west Texas vineyard. Agric. For. Meteor., 71, 99114, doi:10.1016/0168-1923(94)90102-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heilman, J. L., K. J. McInnes, R. W. Gesch, R. J. Lascano, and M. J. Savage, 1996: Effects of trellising on the energy balance of a vineyard. Agric. For. Meteor., 81, 7993, doi:10.1016/0168-1923(95)02312-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hicks, B. B., 1973: Eddy fluxes over a vineyard. Agric. For. Meteor., 12, 203215, doi:10.1016/0002-1571(73)90020-4.

  • Holland, S., and Coauthors, 2013: Micro-Bowen ratio system for measuring evapotranspiration in a vineyard interrow. Agric. For. Meteor., 177, 93100, doi:10.1016/j.agrformet.2013.04.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoyaux, J., C. Moureaux, D. Tourneur, B. Bodson, and B. Aubinet, 2008: Extrapolating gross primary productivity from leaf to canopy scale in a winter wheat crop. Agric. For. Meteor., 148, 668679, doi:10.1016/j.agrformet.2007.11.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z. M., and Coauthors, 2009: Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model. Agric. For. Meteor., 149, 14101420, doi:10.1016/j.agrformet.2009.03.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jara, J., C. O. Stockle, and J. Kjelgaard, 1998: Measurement of evapotranspiration and its components in a corn (Zea Mays L.) field. Agric. For. Meteor., 92, 131145, doi:10.1016/S0168-1923(98)00083-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, X., and Coauthors, 2016: Energy partitioning over a semi-arid shrubland in northern China. Hydrol. Processes, 30, 972985, doi:10.1002/hyp.10685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanemasu, E. T., and G. F. Arkin, 1974: Radiant energy and light environment of crops. Agric. Meteor., 14, 211225, doi:10.1016/0002-1571(74)90020-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, M., and Coauthors, 2015: Energy partitioning and surface resistance of a poplar plantation in northern China. Biogeosciences, 12, 42454259, doi:10.5194/bg-12-4245-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerridge, B. L., J. W. Hornbuckle, E. W. Christen, and R. D. Faulkner, 2013: Using soil surface temperature to assess soil evaporation in a drip irrigated vineyard. Agric. Water Manage., 116, 128141, doi:10.1016/j.agwat.2012.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kool, D., W. P. Kustas, A. Ben-Gal, N. Lazarovitch, J. L. Heitman, T. J. Sauer, and N. Agam, 2016: Energy and evapotranspiration partitioning in a desert vineyard. Agric. For. Meteor., 218–219, 277287, doi:10.1016/j.agrformet.2016.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lascano, R. J., C. H. M. van Bavel, J. L. Hatfield, and D. R. Upchurch, 1987: Energy and water balance of a sparse crop: Simulated and measured soil and crop evaporation. Soil. Sci. Soc. Amer. J., 51, 11131121, doi:10.2136/sssaj1987.03615995005100050004x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, H. M., and D. W. Yang, 2010: Interannual and seasonal variability in evapotranspiration and energy partitioning over an irrigated cropland in the North China Plain. Agric. For. Meteor., 150, 581589, doi:10.1016/j.agrformet.2010.01.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S. E., S. Z. Kang, L. Zhang, F. S. Li, Z. L. Zhu, and B. Z. Zhang, 2008: A comparison of three methods for determining vineyard evapotranspiration in the arid desert regions of northwest China. Hydrol. Processes, 22, 45544564, doi:10.1002/hyp.7059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S. E., and Coauthors, 2015: Ecosystem water use efficiency for a sparse vineyard in arid northwest China. Agric. Water Manage., 148, 2433, doi:10.1016/j.agwat.2014.08.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z. Q., G. R. Yu, X. F. Wen, L. M. Zhang, C. Y. Ren, and Y. L. Fu, 2005: Energy balance closure at ChinaFLUX sites. Sci. China, 48D, 5162.

    • Search Google Scholar
    • Export Citation
  • Liljedahl, A. K., L. D. Hinzman, Y. Harazono, D. Zona, C. E. Tweedie, R. D. Hollister, R. Engstrom, and W. C. Oechel, 2011: Nonlinear controls on evapotranspiration in arctic coastal wetlands. Biogeosciences, 8, 33753389, doi:10.5194/bg-8-3375-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., W. Z. Zhao, Z. J. Wen, and Z. H. Zhang, 2014: Response of water and energy exchange to the environmental variable in a desert-oasis wetland of northwest China. Hydrol. Processes, 28, 60986112, doi:10.1002/hyp.10098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C. W., T. S. Du, F. S. Li, S. Z. Kang, S. E. Li, and L. Tong, 2012: Trunk sap flow characteristics during two growth stages of apple tree and its relationships with affecting factors in an arid region of northwest China. Agric. Water Manage., 104, 193202, doi:10.1016/j.agwat.2011.12.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López-Olivari, R., S. Ortega-Farías, and C. Poblete-Echeverría, 2016: Partitioning of net radiation and evapotranspiration over a superintensive drip-irrigated olive orchard. Irrig. Sci., 34, 1731, doi:10.1007/s00271-015-0484-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loridan, T., and C. S. B. Grimmond, 2012: Characterization of energy flux partitioning in urban environments: Links with surface seasonal properties. J. Appl. Meteor. Climatol., 51, 219241, doi:10.1175/JAMC-D-11-038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNaughton, K. G., and P. G. Jarvis, 1983: Predicting effects of vegetation changes on transpiration and evaporation. Additional Woody Crop Plants, T. T. Kozlowski, Ed., Vol. VII, Water Deficits and Plant Growth, Academic Press, 1–47, doi:10.1016/B978-0-12-424157-2.50007-0.

    • Crossref
    • Export Citation
  • Monteith, J. L., 1965: Evaporation and environment. Symp. Soc. Exp. Biol., 19, 205234.

  • Montes, C., J. P. Lhomme, J. Demarty, L. Prevot, and F. Jacob, 2014: A three-source SVAT modeling of evaporation: Application to the seasonal dynamics of a grassed vineyard. Agric. For. Meteor., 191, 6480, doi:10.1016/j.agrformet.2014.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morillas, L., R. Leuning, L. Villagarcia, M. Garcia, P. Serrano-Ortiz, and F. Domingo, 2013: Improving evapotranspiration estimates in Mediterranean drylands: The role of soil evaporation. Water Resour. Res., 49, 65726586, doi:10.1002/wrcr.20468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naithani, K. J., B. E. Ewers, and E. Pendall, 2012: Sap flux–scaled transpiration and stomatal conductance response to soil and atmospheric drought in a semi-arid sagebrush ecosystem. J. Hydrol., 464–465, 176185, doi:10.1016/j.jhydrol.2012.07.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nichols, W. E., and R. H. Cuenca, 1993: Evaluation of evaporative fraction for parameterization of the surface energy balance. Water Resour. Res., 29, 36813690, doi:10.1029/93WR01958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norman, J. M., W. P. Kustas, and K. S. Humes, 1995: Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteor., 77, 263293, doi:10.1016/0168-1923(95)02265-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega-Farias, S., M. Carrasco, A. Olioso, C. Acevedo, and C. Poblete, 2007: Latent heat flux over a Cabernet Sauvignon vineyard using the Shuttleworth and Wallace model. Irrig. Sci., 25, 161170, doi:10.1007/s00271-006-0047-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega-Farias, S., C. Poblete-Echeverría, and N. Brisson, 2010: Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements. Agric. For. Meteor., 150, 276286, doi:10.1016/j.agrformet.2009.11.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paw U, K. T., D. D. Baldocchi, T. P. Meyers, and K. B. Wilson, 2000: Correction of eddy covariance measurements incorporating both advective effects and density fluxes. Bound.-Layer Meteor., 97, 487511, doi:10.1023/A:1002786702909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poblete-Echeverria, C., and S. Ortega-Farias, 2009: Estimation of actual evapotranspiration for a drip-irrigated Merlot vineyard using a three-source model. Irrig. Sci., 28, 6578, doi:10.1007/s00271-009-0183-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, J., 1981: The Radiation Regime and Architecture of Plant Stands. Vol. 3, Tasks for Vegetation Sciences, Springer, 391 pp., doi:10.1007/978-94-009-8647-3.

    • Crossref
    • Export Citation
  • Sene, K. J., 1996: Meteorological estimates for the water balance of a sparse vine crop growing in a semiarid condition. J. Hydrol., 179, 259280, doi:10.1016/0022-1694(95)02828-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapland, T. M., R. L. Snyder, D. R. Smart, and L. E. Williams, 2012: Estimation of actual evapotranspiration in wine grape vineyards located on hillside terrain using surface renewal analysis. Irrig. Sci., 30, 471484, doi:10.1007/s00271-012-0377-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, Y. J., and Coauthors, 2004: Seasonal variation of energy partitioning in irrigated lands. Hydrol. Processes, 18, 22232234, doi:10.1002/hyp.5535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., 2007: Putting the “vap” into evaporation. Hydrol. Earth Syst. Sci., 11, 210244, doi:10.5194/hess-11-210-2007.

  • Shuttleworth, W. J., and J. S. Wallace, 1985: Evaporation from sparse crops—An energy combination theory. Quart. J. Roy. Meteor. Soc., 111, 839855, doi:10.1002/qj.49711146910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sumner, D. M., and J. M. Jacobs, 2005: Utility of Penman–Monteith, Priestley–Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration. J. Hydrol., 308, 81104, doi:10.1016/j.jhydrol.2004.10.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Y. K., X. F. Wen, X. M. Sun, X. Y. Zhang, and H. M. Wang, 2014: Interannual variation of the Bowen ratio in a subtropical coniferous plantation in southeast China, 2003–2012. PLoS One, 9, e88267, doi:10.1371/journal.pone.0088267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trambouze, W., P. Bertuzzi, and M. Voltz, 1998: Comparison of methods for estimating actual evapotranspiration in a row-cropped vineyard. Agric. For. Meteor., 91, 193208, doi:10.1016/S0168-1923(98)00072-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twine, T. E., and Coauthors, 2000: Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteor., 103, 279300, doi:10.1016/S0168-1923(00)00123-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villalobos, F. J., L. Testi, and M. F. Moreno-Perez, 2009: Evaporation and canopy conductance of citrus orchards. Agric. Water Manage., 96, 565573, doi:10.1016/j.agwat.2008.09.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteor. Soc., 106, 85100, doi:10.1002/qj.49710644707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, D. G., and Coauthors, 2004: Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agric. For. Meteor., 125, 241258, doi:10.1016/j.agrformet.2004.04.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, K., and Coauthors, 2002: Energy balance closure at FLUXNET sites. Agric. For. Meteor., 113, 223243, doi:10.1016/S0168-1923(02)00109-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yunusa, I. A. M., R. R. Walker, and P. Lu, 2004: Evapotranspiration components from energy balance, sapflow and microlysimetry techniques for an irrigated vineyard in inland Australia. Agric. For. Meteor., 127, 93107, doi:10.1016/j.agrformet.2004.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeggaf, T. A., H. Anyoji, and H. Yasuda, 2006: Fixed and variable light extinction coefficients for estimating plant transpiration and soil evaporation under irrigated maize. Agric. Water Manage., 84, 186192, doi:10.1016/j.agwat.2006.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeggaf, T. A., H. Anyoji, S. Takeuchi, and T. Yano, 2007: Partitioning energy fluxes between canopy and soil surface under sparse maize during wet and dry periods. Water Saving in Mediterranean Agriculture and Future Research Needs, Vol. 1, N. Lamaddalena et al., Eds., CIHEAM, 201–211.

  • Zeggaf, T. A., S. Takeuchi, H. Dehghanisanij, H. Anyoji, and H. Yano, 2008: A Bowen ratio technique for partitioning energy fluxes between maize transpiration and soil surface evaporation. Agron. J., 100, 988996, doi:10.2134/agronj2007.0201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, B. Z., S. Z. Kang, L. Zhang, T. S. Du, S. E. Li, and X. Y. Yang, 2007: Estimation of seasonal crop water consumption in a vineyard using Bowen ratio-energy balance method. Hydrol. Processes, 21, 36353641, doi:10.1002/hyp.6568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, B. Z., S. Z. Kang, F. S. Li, and L. Zhang, 2008: Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China. Agric. For. Meteor., 148, 16291640, doi:10.1016/j.agrformet.2008.05.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, B. Z., S. Z. Kang, L. Zhang, L. Tong, and T. S. Du, 2009: An evapotranspiration model for sparsely vegetated canopies under partial root-zone irrigation. Agric. For. Meteor., 149, 20072011, doi:10.1016/j.agrformet.2009.07.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, B. Z., S. Z. Kang, F. S. Li, L. Tong, and T. S. Du, 2010: Variation in vineyard evapotranspiration in an arid region of northwest China. Agric. Water Manage., 97, 18981904, doi:10.1016/j.agwat.2010.06.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and R. Lemeur, 1995: Evaluation of daily evapotranspiration estimates from instantaneous measurements. Agric. For. Meteor., 74, 139154, doi:10.1016/0168-1923(94)02181-I.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. Q., 2012: Evapotranspiration and canopy water–carbon coupled model of a vineyard in arid regions of northwest China (in Chinese). Ph.D. thesis, China Agricultural University, 111 pp.

  • Zhang, Y. Q., S. Z. Kang, E. J. Ward, R. S. Ding, X. Zhang, and R. Zheng, 2011: Evapotranspiration components determined by sap flow and microlysimetry techniques of a vineyard in northwest China: Dynamics and influential factors. Agric. Water Manage., 98, 12071214, doi:10.1016/j.agwat.2011.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, P., S. E. Li, F. S. Li, T. S. Du, L. Tong, and S. Z. Kang, 2015: Comparison of dual crop coefficient method and Shuttleworth–Wallace model in evapotranspiration partitioning in a vineyard of northwest China. Agric. Water Manage., 160, 4156, doi:10.1016/j.agwat.2015.06.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, G. F., and Coauthors, 2014: Simultaneously assimilating multivariate data sets into the two-source evapotranspiration model by Bayesian approach: Application to spring maize in an arid region of northwestern China. Geosci. Model Dev., 7, 14671482, doi:10.5194/gmd-7-1467-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, X. J., G. R. Yu, Z. M. Hu, Q. F. Wang, H. L. He, J. H. Yan, H. M. Wang, and J. H. Zhang, 2015: Spatiotemporal variations of T/ET (the ratio of transpiration to evapotranspiration) in three forests of eastern China. Ecol. Indic., 52, 411421, doi:10.1016/j.ecolind.2014.12.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 433 134 4
PDF Downloads 340 99 4