Modeling Surface Runoff and Water Fluxes over Contrasted Soils in the Pastoral Sahel: Evaluation of the ALMIP2 Land Surface Models over the Gourma Region in Mali

Manuela Grippa Géosciences Environnement Toulouse (UPS, CNRS, IRD), Toulouse, France

Search for other papers by Manuela Grippa in
Current site
Google Scholar
PubMed
Close
,
Laurent Kergoat Géosciences Environnement Toulouse (UPS, CNRS, IRD), Toulouse, France

Search for other papers by Laurent Kergoat in
Current site
Google Scholar
PubMed
Close
,
Aaron Boone CNRM/GAME, Toulouse, France

Search for other papers by Aaron Boone in
Current site
Google Scholar
PubMed
Close
,
Christophe Peugeot HydroSciences Montpellier, Montpellier, France

Search for other papers by Christophe Peugeot in
Current site
Google Scholar
PubMed
Close
,
Jérôme Demarty HydroSciences Montpellier, Montpellier, France

Search for other papers by Jérôme Demarty in
Current site
Google Scholar
PubMed
Close
,
Bernard Cappelaere HydroSciences Montpellier, Montpellier, France

Search for other papers by Bernard Cappelaere in
Current site
Google Scholar
PubMed
Close
,
Laetitia Gal Géosciences Environnement Toulouse (UPS, CNRS, IRD), Toulouse, France

Search for other papers by Laetitia Gal in
Current site
Google Scholar
PubMed
Close
,
Pierre Hiernaux Géosciences Environnement Toulouse (UPS, CNRS, IRD), Toulouse, France

Search for other papers by Pierre Hiernaux in
Current site
Google Scholar
PubMed
Close
,
Eric Mougin Géosciences Environnement Toulouse (UPS, CNRS, IRD), Toulouse, France

Search for other papers by Eric Mougin in
Current site
Google Scholar
PubMed
Close
,
Agnès Ducharne Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les sols, Sorbonne University, Paris, France

Search for other papers by Agnès Ducharne in
Current site
Google Scholar
PubMed
Close
,
Emanuel Dutra European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Emanuel Dutra in
Current site
Google Scholar
PubMed
Close
,
Martha Anderson Hydrology and Remote Sensing Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland

Search for other papers by Martha Anderson in
Current site
Google Scholar
PubMed
Close
,
Christopher Hain Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Christopher Hain in
Current site
Google Scholar
PubMed
Close
, and
ALMIP2 Working Group Géosciences Environnement Toulouse (UPS, CNRS, IRD), Toulouse, France
CNRM/GAME, Toulouse, France
HydroSciences Montpellier, Montpellier, France
Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les sols, Sorbonne University, Paris, France
European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Hydrology and Remote Sensing Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland
Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by ALMIP2 Working Group in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Land surface processes play an important role in the West African monsoon variability. In addition, the evolution of hydrological systems in this region, and particularly the increase of surface water and runoff coefficients observed since the 1950s, has had a strong impact on water resources and on the occurrence of floods events. This study addresses results from phase 2 of the African Monsoon Multidisciplinary Analysis (AMMA) Land Surface Model Intercomparison Project (ALMIP2), carried out to evaluate the capability of different state-of-the-art land surface models to reproduce surface processes at the mesoscale. Evaluation of runoff and water fluxes over the Mali site is carried out through comparison with runoff estimations over endorheic watersheds as well as evapotranspiration (ET) measurements. Three remote-sensing-based ET products [ALEXI, MODIS, and Global Land Evaporation Amsterdam Model (GLEAM)] are also analyzed. It is found that, over deep sandy soils, surface runoff is generally overestimated, but the ALMIP2 multimodel mean reproduces in situ measurements of ET and water stress events rather well. However, ALMIP2 models are generally unable to distinguish among the two contrasted hydrological systems typical of the study area. Employing as input a soil map that explicitly represents shallow soils improves the representation of water fluxes for the models that can account for their representation. Shallow soils are shown to be also quite challenging for remote-sensing-based ET products, even if their effect on evaporative loss was captured by the diagnostic thermal-based ALEXI. A better representation of these soils, in soil databases, model parameterizations, and remote sensing algorithms, is fundamental to improve the estimation of water fluxes in this part of the Sahel.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Please see the appendix for the full list of working group members.

Corresponding author e-mail: Manuela Grippa, manuela.grippa@get.omp.eu

Abstract

Land surface processes play an important role in the West African monsoon variability. In addition, the evolution of hydrological systems in this region, and particularly the increase of surface water and runoff coefficients observed since the 1950s, has had a strong impact on water resources and on the occurrence of floods events. This study addresses results from phase 2 of the African Monsoon Multidisciplinary Analysis (AMMA) Land Surface Model Intercomparison Project (ALMIP2), carried out to evaluate the capability of different state-of-the-art land surface models to reproduce surface processes at the mesoscale. Evaluation of runoff and water fluxes over the Mali site is carried out through comparison with runoff estimations over endorheic watersheds as well as evapotranspiration (ET) measurements. Three remote-sensing-based ET products [ALEXI, MODIS, and Global Land Evaporation Amsterdam Model (GLEAM)] are also analyzed. It is found that, over deep sandy soils, surface runoff is generally overestimated, but the ALMIP2 multimodel mean reproduces in situ measurements of ET and water stress events rather well. However, ALMIP2 models are generally unable to distinguish among the two contrasted hydrological systems typical of the study area. Employing as input a soil map that explicitly represents shallow soils improves the representation of water fluxes for the models that can account for their representation. Shallow soils are shown to be also quite challenging for remote-sensing-based ET products, even if their effect on evaporative loss was captured by the diagnostic thermal-based ALEXI. A better representation of these soils, in soil databases, model parameterizations, and remote sensing algorithms, is fundamental to improve the estimation of water fluxes in this part of the Sahel.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Please see the appendix for the full list of working group members.

Corresponding author e-mail: Manuela Grippa, manuela.grippa@get.omp.eu
Save
  • Amogu, O., and Coauthors, 2010: Increasing river flows in the Sahel? Water, 2, 170199, doi:10.3390/w2020170.

  • Anderson, M. C., J. M. Norman, J. R. Mecikalski, J. A. Otkin, and W. P. Kustas, 2007: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J. Geophys. Res., 112, D10117, doi:10.1029/2006JD007506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., and Coauthors, 2011: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci., 15, 223239, doi:10.5194/hess-15-223-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., C. Zolin, C. R. Hain, K. A. Semmens, M. T. Yilmaz, and F. Gao, 2015: Comparison of satellite-derived LAI and precipitation anomalies over Brazil with a thermal infrared–based Evaporative Stress Index for 2003–2013. J. Hydrol., 526, 287302, doi:10.1016/j.jhydrol.2015.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsamo, G., F. Pappenberger, E. Dutra, P. Viterbo, and B. van den Hurk, 2011: A revised land hydrology in the ECMWF model: A step towards daily water flux prediction in a fully-closed water cycle. Hydrol. Processes, 25, 10461054, doi:10.1002/hyp.7808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baup, F., E. Mougin, P. de Rosnay, P. Hiernaux, F. Frappart, P. L. Frison, M. Zribi, and J. Viarre, 2011: Mapping surface soil moisture over the Gourma mesoscale site (Mali) by using ENVISAT ASAR data. Hydrol. Earth Syst. Sci., 15, 603616, doi:10.5194/hess-15-603-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677699, doi:10.5194/gmd-4-677-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boone, A., and Coauthors, 2009: The AMMA Land Surface Model Intercomparison Project (ALMIP). Bull. Amer. Meteor. Soc., 90, 18651880, doi:10.1175/2009BAMS2786.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boussetta, S., and Coauthors, 2013: Natural land carbon dioxide exchanges in the ECMWF integrated forecasting system: Implementation and offline validation. J. Geophys. Res. Atmos., 118, 59235946, doi:10.1002/jgrd.50488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casenave, A., and C. Valentin, 1992: A runoff capability classification system based on surface features criteria in the arid and semi-arid areas of West Africa. J. Hydrol., 130, 231249, doi:10.1016/0022-1694(92)90112-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassé, C., M. Gosset, T. Vischel, G. Quantin, and B. A. Tanimoun, 2016: Model-based study of the role of rainfall and land use land cover in the changes in Niger Red floods occurrence and intensity in Niamey between 1953 and 2012. Hydrol. Earth Syst. Sci., 20, 28412859, doi:10.5194/hess-20-2841-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, D. B., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 2: Carbon fluxes and vegetation dynamics. Geosci. Model Dev., 4, 701722, doi:10.5194/gmd-4-701-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dardel, C., L. Kergoat, P. Hiernaux, M. Grippa, E. Mougin, P. Ciais, and C.-C. Nguyen, 2014: Rain-use-efficiency: What it tells us about the conflicting Sahel greening and Sahelian paradox. Remote Sens., 6, 34463474, doi:10.3390/rs6043446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Decharme, B., C. Ottlé, S. Saux-Picart, N. Boulain, B. Cappelaere, D. Ramier, and M. Zribi, 2009: A new land surface hydrology within the Noah-WRF land–atmosphere mesoscale model applied to semiarid environment: Evaluation over the Dantiandou Kori (Niger). Adv. Meteor., 2009, 113, doi:10.1155/2009/731874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Kauwe, M. G., C. M. Taylor, P. P. Harris, G. P. Weedon, and R. J. Ellis, 2013: Quantifying land surface temperature variability for two Sahelian mesoscale regions during the wet season. J. Hydrometeor., 14, 16051619, doi:10.1175/JHM-D-12-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., and Coauthors, 2008: AMMA Land Surface Model Intercomparison Experiment coupled to the Community Microwave Emission Model: ALMIP-MEM. J. Geophys. Res., 114, D05108, doi:10.1029/2008JD010724.

    • Search Google Scholar
    • Export Citation
  • Descroix, L., and Coauthors, 2009: Spatio-temporal variability of hydrological regimes around the boundaries between Sahelian and Sudanian areas of West Africa: A synthesis. J. Hydrol., 375, 90102, doi:10.1016/j.jhydrol.2008.12.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Descroix, L., P. Genthon, O. Amogu, J.-L. Rajot, D. Sighomnou, and M. Vauclin, 2012: Change in Sahelian rivers hydrograph: The case of recent red floods of the Niger River in the Niamey region. Global Planet. Change, 98–99, 1830, doi:10.1016/j.gloplacha.2012.07.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • d’Orgeval, T., J. Polcher, and P. de Rosnay, 2008: Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes. Hydrol. Earth Syst. Sci., 12, 13871401, doi:10.5194/hess-12-1387-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fatras, C., F. Frappart, E. Mougin, M. Grippa, and P. Hiernaux, 2012: Estimating surface soil moisture over Sahel using ENVISAT radar altimetry. Remote Sens. Environ., 123, 496507, doi:10.1016/j.rse.2012.04.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Favreau, G., B. Cappelaere, S. Massuel, M. Leblanc, M. Boucher, N. Boulain, and C. Leduc, 2009: Land clearing, climate variability, and water resources increase in semiarid southwest Niger: A review. Water Resour. Res., 45, W00A16, doi:10.1029/2007WR006785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frappart, F., and Coauthors, 2009: Rainfall regime across the Sahel band in the Gourma region, Mali. J. Hydrol., 375, 128142, doi:10.1016/j.jhydrol.2009.03.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gal, L., M. Grippa, L. Kergoat, P. Hiernaux, C. Peugeot, and E. Mougin, 2016: Changes in ponds water volume and runoff coefficients over ungauged Sahelian watersheds. J. Hydrol., 540, 11761188, doi:10.1016/j.jhydrol.2016.07.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, M., and Coauthors, 2013: Actual evapotranspiration in drylands derived from in-situ and satellite data: Assessing biophysical constraints. Remote Sens. Environ., 131, 103118, doi:10.1016/j.rse.2012.12.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia-Carreras, L., D. J. Parker, C. M. Taylor, C. E. Reeves, and J. G. Murphy, 2010: Impact of mesoscale vegetation heterogeneities on the dynamical and thermodynamic properties of the planetary boundary layer. J. Geophys. Res., 115, D03102, doi:10.1029/2009JD012811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardelle, J., P. Hiernaux, L. Kergoat, and M. Grippa, 2010: Less rain, more water in ponds: A remote sensing study of the dynamics of surface waters from 1950 to present in pastoral Sahel (Gourma region, Mali). Hydrol. Earth Syst. Sci., 14, 309324, doi:10.5194/hess-14-309-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrigues, S., D. Allard, F. Baret, and J. Morisette, 2008: Multivariate quantification of landscape spatial heterogeneity using variogram models. Remote Sens. Environ., 112, 216230, doi:10.1016/j.rse.2007.04.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gedney, N., P. M. Cox, H. Douville, J. Polcher, and P. J. Valdes, 2000: Characterizing GCM land surface schemes to understand their responses to climate change. J. Climate, 13, 30663079, doi:10.1175/1520-0442(2000)013<3066:CGLSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Getirana, A. C. V., A. Boone, and C. Peugeot, 2014: Evaluating LSM-based water budgets over a West African basin assisted with a river routing scheme. J. Hydrometeor., 15, 23312346, doi:10.1175/JHM-D-14-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grippa, M., and Coauthors, 2011: Land water storage variability over West Africa estimated by Gravity Recovery and Climate Experiment (GRACE) and land surface models. Water Resour. Res., 47, W05549, doi:10.1029/2009WR008856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiernaux, P., and H. N. Le Houérou, 2006: Les parcours du Sahel. Sècheresse, 17 (1–2), 5171.

  • Holmes, T., W. T. Crow, C. R. Hain, M. C. Anderson, and W. P. Kustas, 2015: Diurnal temperature cycle as observed by thermal infrared and microwave radiometers. Remote Sens. Environ., 158, 110125, doi:10.1016/j.rse.2014.10.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahan, D. S., Y. Xue, and S. J. Allen, 2006: The impact of vegetation and soil parameters in simulations of surface energy and water balance in the semi-arid Sahel: A case study using SEBEX and HAPEX-Sahel data. J. Hydrol., 320, 238259, doi:10.1016/j.jhydrol.2005.07.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaptué Tchuenté, A. T., J.-L. Roujean, and S. M. De Jong, 2011: Comparison and relative quality assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP land cover data sets at the African continental scale. Int. J. Appl. Earth Obs. Geoinf., 13, 207219, doi:10.1016/j.jag.2010.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kergoat, L., and Coauthors, 2015: Évolutions paradoxales des mares en Sahel non cultivé: Diagnostic, causes et conséquences. Les sociétés rurales face aux changements climatiques et environnementaux en Afrique de l'Ouest, S. Benjamin et al., Eds., IRD, 193–207.

    • Crossref
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 1992: Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res., 97, 26972715, doi:10.1029/91JD01696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, doi:10.1029/2000JD900327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauwaet, D., K. De Ridder, and N. P. M. van Lipzig, 2008: The influence of soil and vegetation parameters on atmospheric variables relevant for convection in the Sahel. J. Hydrometeor., 9, 461476, doi:10.1175/2007JHM813.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, doi:10.1029/2011MS00045.

    • Search Google Scholar
    • Export Citation
  • Lebel, T., and Coauthors, 2009: AMMA-CATCH studies in the Sahelian region of West-Africa: An overview. J. Hydrol., 375, 313, doi:10.1016/j.jhydrol.2009.03.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, K. Y., M. T. Coe, and N. Ramankutty, 2005: Investigation of hydrological variability in West Africa using land surface models. J. Climate, 18, 31733188, doi:10.1175/JCLI3452.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, K. Y., M. T. Coe, N. Ramankutty, and R. D. Jong, 2007: Modeling the hydrological impact of land-use change in West Africa. J. Hydrol., 337, 258268, doi:10.1016/j.jhydrol.2007.01.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohou, F., and Coauthors, 2014: Surface response to rain events throughout the West African monsoon. Atmos. Chem. Phys., 14, 38833898, doi:10.5194/acp-14-3883-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louvet, S., and Coauthors, 2015: SMOS soil moisture product evaluation over West-Africa from local to regional scale. Remote Sens. Environ., 156, 383394, doi:10.1016/j.rse.2014.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahe, G., C. Leduc, A. Amani, J. E. Paturel, S. Girard, E. Servat, and A. Dezetter, 2003: Augmentation du ruissellement de surface en région soudano-sahélienne et impact sur les ressources en eau. IAHS Publ., 278, 215–222.

  • Mahe, G., J.-E. Paturel, E. Servat, D. Conway, and A. Dezetter, 2005: The impact of land use change on soil water holding capacity and river flow modelling in the Nakambe River, Burkina-Faso. J. Hydrol., 300, 3343, doi:10.1016/j.jhydrol.2004.04.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mamadou, I., and Coauthors, 2015: Exorheism growth as an explanation of increasing flooding in the Sahel. Catena, 131, 130139, doi:10.1016/j.catena.2015.03.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, M., C. Funk, and J. Michaelsen, 2012: Examining evapotranspiration trends in Africa. Climate Dyn., 38, 18491865, doi:10.1007/s00382-012-1299-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, V., N. Kalthoff, and L. Gantner, 2015: Predictability of convective precipitation for West Africa: Does the land surface influence ensemble variability as much as the atmosphere? Atmos. Res., 157, 91107, doi:10.1016/j.atmosres.2015.01.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., T. R. H. Holmes, R. A. M. De Jeu, J. H. Gash, A. G. C. A. Meesters, and A. J. Dolman, 2011: Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci., 15, 453469, doi:10.5194/hess-15-453-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mougin, E., and Coauthors, 2009: The AMMA-CATCH Gourma observatory site in Mali: Relating climatic variations to changes in vegetation, surface hydrology, fluxes and natural resources. J. Hydrol., 375, 1433, doi:10.1016/j.jhydrol.2009.06.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mu, Q., M. Zhao, and S. W. Running, 2011: Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ., 115, 17811800, doi:10.1016/j.rse.2011.02.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nasonova, O. N., E. M. Gusev, and G. V. Ayzel, 2015: Optimizing land surface parameters for simulating river runoff from 323 MOPEX-watersheds. Water Resour., 42, 186197, doi:10.1134/S0097807815020104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and J.-F. Mahfouf, 1996: The ISBA land surface parameterisation scheme. Global Planet. Change, 13, 145159, doi:10.1016/0921-8181(95)00043-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedinotti, V., A. Boone, B. Decharme, J. F. Crétaux, N. Mognard, G. Panthou, F. Papa, and B. A. Tanimoun, 2012: Evaluation of the ISBA-TRIP continental hydrologic system over the Niger basin using in situ and satellite derived datasets. Hydrol. Earth Syst. Sci., 16, 17451773, doi:10.5194/hess-16-1745-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierre, C., M. Grippa, E. Mougin, F. Guichard, and L. Kergoat, 2016: Changes in Sahelian annual vegetation growth and phenology since 1960: A modeling approach. Global Planet. Change, 143, 162174, doi:10.1016/j.gloplacha.2016.06.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridler, M. E., I. Sandholt, M. Butts, S. Lerer, E. Mougin, F. Timouk, L. Kergoat, and H. Madsen, 2012: Calibrating a soil–vegetation–atmosphere transfer model with remote sensing estimates of surface temperature and soil surface moisture in a semi arid environment. J. Hydrol., 436–437, 112, doi:10.1016/j.jhydrol.2012.01.047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roudier, P., A. Ducharne, and L. Feyen, 2014: Climate change impacts on runoff in West Africa: A review. Hydrol. Earth Syst. Sci., 18, 27892801, doi:10.5194/hess-18-2789-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samain, O., L. Kergoat, P. Hiernaux, F. Guichard, E. Mougin, F. Timouk, and F. Lavenu, 2008: Analysis of the in situ and MODIS albedo variability at multiple timescales in the Sahel. J. Geophys. Res., 113, D14119, doi:10.1029/2007JD009174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saux-Picart, S., and Coauthors, 2009a: Water and energy budgets simulation over the AMMA-Niger super-site spatially constrained with remote sensing data. J. Hydrol., 375, 287295, doi:10.1016/j.jhydrol.2008.12.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saux-Picart, S., and Coauthors, 2009b: SEtHyS_Savannah: A multiple source land surface model applied to Sahelian landscapes. Agric. For. Meteor., 149, 14211432, doi:10.1016/j.agrformet.2009.03.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shmakin, A. B., 1998: The updated version of SPONSOR land surface scheme: PILPS-influenced improvements. Global Planet. Change, 19, 4962, doi:10.1016/S0921-8181(98)00041-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sighomnou, D., and Coauthors, 2013: La crue de 2012 à Niamey: Un paroxysme du paradoxe du Sahel? Sècheresse, 24, 313.

  • Takata, K., S. Emori, and T. Watanabe, 2003: Development of the minimal advanced treatments of surface interaction and runoff. Global Planet. Change, 38, 209222, doi:10.1016/S0921-8181(03)00030-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., and Coauthors, 2011a: New perspectives on land–atmosphere feedbacks from the African Monsoon Multidisciplinary Analysis. Atmos. Sci. Lett., 12, 3844, doi:10.1002/asl.336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., A. Gounou, F. Guichard, P. P. Harris, R. J. Ellis, F. Couvreux, and M. De Kauwe, 2011b: Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nat. Geosci., 4, 430433, doi:10.1038/ngeo1173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., R. A. M. de Jeu, F. Guichard, P. P. Harris, and W. A. Dorigo, 2012: Afternoon rain more likely over drier soils. Nature, 489, 423426, doi:10.1038/nature11377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timouk, F., and Coauthors, 2009: Response of surface energy balance to water regime and vegetation development in a Sahelian landscape. J. Hydrol., 375, 178189, doi:10.1016/j.jhydrol.2009.04.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trambauer, P., S. Maskey, H. Winsemius, M. Werner, and S. Uhlenbrook, 2013: A review of continental scale hydrological models and their suitability for drought forecasting in (sub-Saharan) Africa. Phys. Chem. Earth, 66, 1626, doi:10.1016/j.pce.2013.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trigo, I. F., and Coauthors, 2011: The satellite application facility on land surface analysis. Int. J. Remote Sens., 32, 27252744, doi:10.1080/01431161003743199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velluet, C., and Coauthors, 2014: Building a field- and model-based climatology of local water and energy cycles in the cultivated Sahel—Annual budgets and seasonality. Hydrol. Earth Syst. Sci., 18, 50015024, doi:10.5194/hess-18-5001-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., 1991: Class—A Canadian Land Surface Scheme for GCMS. I. Soil model. Int. J. Climatol., 11, 111133, doi:10.1002/joc.3370110202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vischel, T., T. Lebel, S. Massuel, and B. Cappelaere, 2009: Conditional simulation schemes of rain fields and their application to rainfall–runoff modeling studies in the Sahel. J. Hydrol., 375, 273286, doi:10.1016/j.jhydrol.2009.02.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., and J. Shukla, 1996: The influence of land surface properties on Sahel climate. Part II. Afforestation. J. Climate, 9, 32603275, doi:10.1175/1520-0442(1996)009<3260:TIOLSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, N., J. D. Neelin, K.-M. Lau, and C. J. Tucker, 1999: Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science, 286, 15371540, doi:10.1126/science.286.5444.1537.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 623 191 11
PDF Downloads 269 73 8