Understanding Flood Seasonality and Its Temporal Shifts within the Contiguous United States

Sheng Ye Institute of Hydrology and Water Resources, School of Civil Engineering, Zhejiang University, Hangzhou, China

Search for other papers by Sheng Ye in
Current site
Google Scholar
PubMed
Close
,
Hong-Yi Li Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Hong-Yi Li in
Current site
Google Scholar
PubMed
Close
,
L. Ruby Leung Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by L. Ruby Leung in
Current site
Google Scholar
PubMed
Close
,
Jiali Guo College of Civil and Hydropower Engineering, China Three Gorges University, Yichang, China
State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China

Search for other papers by Jiali Guo in
Current site
Google Scholar
PubMed
Close
,
Qihua Ran Institute of Hydrology and Water Resources, School of Civil Engineering, Zhejiang University, Hangzhou, China

Search for other papers by Qihua Ran in
Current site
Google Scholar
PubMed
Close
,
Yonas Demissie Department of Civil and Environmental Engineering, Washington State University Tri-Cities, Richland, Washington

Search for other papers by Yonas Demissie in
Current site
Google Scholar
PubMed
Close
, and
Murugesu Sivapalan Department of Geography and Geographic Information Science, University of Illinois at Urbana–Champaign, Champaign, Illinois
Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Murugesu Sivapalan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Understanding the causes of flood seasonality is critical for better flood management. This study examines the seasonality of annual maximum floods (AMF) and its changes before and after 1980 at over 250 natural catchments across the contiguous United States. Using circular statistics to define a seasonality index, the analysis focuses on the variability of the flood occurrence date. Generally, catchments with more synchronized seasonal water and energy cycles largely inherit their seasonality of AMF from that of annual maximum rainfall (AMR). In contrast, the seasonality of AMF in catchments with loosely synchronized water and energy cycles are more influenced by high antecedent storage, which is responsible for the amplification of the seasonality of AMF over that of AMR. This understanding then effectively explains a statistically significant shift of flood seasonality detected in some catchments in the recent decades. Catchments where the antecedent soil water storage has increased since 1980 exhibit increasing flood seasonality while catchments that have experienced increases in storm rainfall before the floods have shifted toward floods occurring more variably across the seasons. In the eastern catchments, a concurrent widespread increase in event rainfall magnitude and reduced soil water storage have led to a more variable timing of floods. The findings of the role of antecedent storage and event rainfall on the flood seasonality provide useful insights for understanding future changes in flood seasonality as climate models projected changes in extreme precipitation and aridity over land.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0207.s1.

Current affiliation: Montana State University, Bozeman, Montana.

Corresponding author: Hong-Yi Li, hongyi.li@montana.edu

Abstract

Understanding the causes of flood seasonality is critical for better flood management. This study examines the seasonality of annual maximum floods (AMF) and its changes before and after 1980 at over 250 natural catchments across the contiguous United States. Using circular statistics to define a seasonality index, the analysis focuses on the variability of the flood occurrence date. Generally, catchments with more synchronized seasonal water and energy cycles largely inherit their seasonality of AMF from that of annual maximum rainfall (AMR). In contrast, the seasonality of AMF in catchments with loosely synchronized water and energy cycles are more influenced by high antecedent storage, which is responsible for the amplification of the seasonality of AMF over that of AMR. This understanding then effectively explains a statistically significant shift of flood seasonality detected in some catchments in the recent decades. Catchments where the antecedent soil water storage has increased since 1980 exhibit increasing flood seasonality while catchments that have experienced increases in storm rainfall before the floods have shifted toward floods occurring more variably across the seasons. In the eastern catchments, a concurrent widespread increase in event rainfall magnitude and reduced soil water storage have led to a more variable timing of floods. The findings of the role of antecedent storage and event rainfall on the flood seasonality provide useful insights for understanding future changes in flood seasonality as climate models projected changes in extreme precipitation and aridity over land.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0207.s1.

Current affiliation: Montana State University, Bozeman, Montana.

Corresponding author: Hong-Yi Li, hongyi.li@montana.edu

Supplementary Materials

    • Supplemental Materials (DOC 1.94 MB)
Save
  • Berghuijs, W. R., R. A. Woods, C. J. Hutton, and M. Sivapalan, 2016: Dominant flood generating mechanisms across the United States. Geophys. Res. Lett., 43, 43824390, doi:10.1002/2016GL068070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, A. R., and A. Werritty, 1997: Seasonality of flooding: A case study of north Britain. J. Hydrol., 195, 125, doi:10.1016/S0022-1694(96)03264-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blöschl, G., and A. Montanari, 2010: Climate change impacts—Throwing the dice? Hydrol. Processes, 24, 374381, doi:10.1002/hyp.7574.

  • Burn, D., 1997: Catchment similarity for regional flood frequency analysis using seasonality measures. J. Hydrol., 202, 212230, doi:10.1016/S0022-1694(97)00068-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castellarin, A., D. H. Burn, and A. Brath, 2001: Assessing the effectiveness of hydrological similarity measures for flood frequency analysis. J. Hydrol., 241, 270285, doi:10.1016/S0022-1694(00)00383-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., V. P. Singh, S. Guo, B. Fang, and P. Liu, 2013: A new method for identification of flood seasons using directional statistics. Hydrol. Sci. J., 58, 2840, doi:10.1080/02626667.2012.743661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coopersmith, E., M. A. Yaeger, S. Ye, L. Chengand, and M. Sivapalan, 2012: Exploring the physical controls of regional patterns of flow duration curves—Part 3: A catchment classification system based on regime curve indicators. Hydrol. Earth Syst. Sci., 16, 44674482, doi:10.5194/hess-16-4467-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coopersmith, E., B. S. Minsker, and M. Sivapalan, 2014: Patterns of regional hydroclimatic shifts: An analysis of changing hydrologic regimes. Water Resour. Res., 50, 19601983, doi:10.1002/2012WR013320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coughlan de Perez, E., B. van den Hurk, M. K. van Aalst, B. Jongman, T. Klose, and P. Suarez, 2015: Forecast-based financing: An approach for catalyzing humanitarian action based on extreme weather and climate forecasts. Nat. Hazards Earth Syst. Sci., 15, 895904, doi:10.5194/nhess-15-895-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunderlik, J. M., and T. B. M. J. Ouarda, 2009: Trends in the timing and magnitude of floods in Canada. J. Hydrol., 375, 471480, doi:10.1016/j.jhydrol.2009.06.050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunderlik, J. M., T. B. M. J. Ouarda, and B. Bobee, 2004: Determination of flood seasonality from hydrological records. Hydrol. Sci. J., 49, 511526, doi:10.1623/hysj.49.3.511.54351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dhakal, N., S. Jain, A. Gray, M. Dandy, and E. Stancioff, 2015: Nonstationarity in seasonality of extreme precipitation: A nonparametric circular statistical approach and its application. Water Resour. Res., 51, 44994515, doi:10.1002/2014WR016399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Baldassarre, G., A. Montanari, H. Lins, D. Koutsoyiannis, L. Brandimarte, and G. Blöschl, 2010: Flood fatalities in Africa: From diagnosis to mitigation. Geophys. Res. Lett., 37, L22402, doi:10.1029/2010GL045467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doocy, S., A. Daniels, S. Murray, and T. D. Kirsch, 2013: The human impact of floods: A historical review of events 1980–2009 and systematic literature review. PLOS Currents Disasters, No. 1, 31 pp, doi:10.1371/currents.dis.f4deb457904936b07c09daa98ee8171a.

    • Crossref
    • Export Citation
  • Duan, Q., and Coauthors, 2006: Model Parameter Estimation Experiment (MOPEX): Overview and summary of the second and third workshop results. J. Hydrol., 320, 317, doi:10.1016/j.jhydrol.2005.07.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eder, G., M. Sivapalan, and H. P. Nachtnebel, 2003: Modelling water balances in an Alpine catchment through exploitation of emergent properties over changing time scales. Hydrol. Processes, 17, 21252149, doi:10.1002/hyp.1325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franks, S. W., and G. Kuczera, 2002: Flood frequency analysis: Evidence and implications of secular climate variability, New South Wales. Water Resour. Res., 38, 1062, doi:10.1029/2001WR000232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Froidevaux, P., J. Schwanbeck, R. Weingartner, C. Chevalier, and O. Martius, 2015: Flood triggering in Switzerland: The role of daily to monthly preceding precipitation. Hydrol. Earth Syst. Sci., 19, 39033924, doi:10.5194/hess-19-3903-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, H., M. Hrachowitz, S. J. Schymanski, F. Fenicia, N. Sriwongsitanon, and H. H. G. Savenije, 2014: Climate controls how ecosystems size the root zone storage capacity at catchment scale. Geophys. Res. Lett., 41, 79167923, doi:10.1002/2014GL061668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., D. E. Waliser, F. M. Ralph, E. J. Fetzer, and P. J. Neiman, 2016: Hydrometeorological characteristics of rain-on-snow events associated with atmospheric rivers. Geophys. Res. Lett., 43, 29642973, doi:10.1002/2016GL067978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, J., H.-Y. Li, L. R. Leung, S. Guo, P. Liu, and M. Sivapalan, 2014: Links between flood frequency and annual water balance behaviors: A basis for similarity and regionalization. Water Resour. Res., 50, 937953, doi:10.1002/2013WR014374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., N. M. Roberts, H. J. Fowler, M. J. Roberts, S. C. Chan, and C. A. Senior, 2014: Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Climate Change, 4, 570576, doi:10.1038/nclimate2258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koutroulis, A. G., I. K. Tsanis, and I. N. Daliakopoulos, 2010: Seasonality of floods and their hydrometeorologic characteristics in the island of Crete. J. Hydrol., 394, 90100, doi:10.1016/j.jhydrol.2010.04.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kundzewicz, Z. W., Ed., 2012: Changes in Flood Risk in Europe. CRC Press, 544 pp.

  • Kundzewicz, Z. W., and Coauthors, 2014: Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J., 59, 128, doi:10.1080/02626667.2013.857411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and Y. Qian, 2009: Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys. Res. Lett., 36, L03820, doi:10.1029/2008GL036445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levene, H., 1960: Robust tests for the equality of variance. Contributions to Probability and Statistics, I. Olkin, Ed., Stanford University Press, 278–292.

  • Macdonald, N., 2012: Trends in flood seasonality of the River Ouse (northern England) from archive and instrumental sources since AD 1600. Climatic Change, 110, 901923, doi:10.1007/s10584-011-0117-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magilligan, F. J., and B. E. Graber, 1996: Hydroclimatological and geomorphic controls on the timing and spatial variability of floods in New England, USA. J. Hydrol., 178, 159180, doi:10.1016/0022-1694(95)02807-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallakpour, I., and G. Villarini, 2015: The changing nature of flooding across the central United States. Nat. Climate Change, 5, 250254, doi:10.1038/nclimate2516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchi, L., M. Borga, E. Preciso, and E. Gaume, 2010: Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J. Hydrol., 394, 118133, doi:10.1016/j.jhydrol.2010.07.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, G. F., and H. V. Gupta, 2010: Toward improved identification of hydrological models: A diagnostic evaluation of the “abcd” monthly water balance model for the conterminous United States. Water Resour. Res., 46, W08507, doi:10.1029/2009WR008294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merz, R., and G. Blöschl, 2009: Process controls on the statistical flood moments—A data based analysis. Hydrol. Processes, 23, 675696, doi:10.1002/hyp.7168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merz, R., U. Piock-Ellena, G. Blöschl, and D. Gutknecht, 1999: Seasonality of flood processes in Austria. IAHS Publ., 255, 273278.

  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, doi:10.1175/2011JHM1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, A. J., and Coauthors, 2015: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: Data set characteristics and assessment of regional variability in hydrologic model performance. Hydrol. Earth Syst. Sci., 19, 209223, doi:10.5194/hess-19-209-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norbiato, D., M. Borga, R. Merz, G. Blöschl, and A. Carton, 2009: Controls on event runoff coefficients in the eastern Italian Alps. J. Hydrol., 375, 312325, doi:10.1016/j.jhydrol.2009.06.044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2015: Precipitation extremes under climate change. Curr. Climate Change Rep., 1, 4959, doi:10.1007/s40641-015-0009-3.

  • Pagano, T., and D. Garen, 2005: A recent increase in western U. S. streamflow variability and persistence. J. Hydrometeor., 6, 173179, doi:10.1175/JHM410.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parajka, J., and Coauthors, 2010: Seasonal characteristics of flood regimes across the Alpine–Carpathian range. J. Hydrol., 394, 7889, doi:10.1016/j.jhydrol.2010.05.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paschalis, A., S. Fatichi, P. Molnar, S. Rimkus, and P. Burlando, 2014: On the effects of small scale space–time variability of rainfall on basin flood response. J. Hydrol., 514, 313327, doi:10.1016/j.jhydrol.2014.04.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S., and Q. Fu, 2014: A drier future? Science, 343, 737739, doi:10.1126/science.1247620.

  • Stephens, E., J. J. Day, F. Pappenberger, and H. Cloke, 2015: Precipitation and floodiness. Geophys. Res. Lett., 42, 10 31610 323, doi:10.1002/2015GL066779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UNISDR, 2011: Revealing risk, redefining development. United Nations Office for Disaster Risk Reduction Rep., 178 pp. [Available online at https://www.unisdr.org/we/inform/publications/19846.]

  • Villarini, G., 2016: On the seasonality of flooding across the continental United States. Adv. Water Resour., 87, 8091, doi:10.1016/j.advwatres.2015.11.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Y., J. Wan, and G. J. D. Hewings, 2013: Flooding and the Midwest economy: Assessing the Midwest floods of 1993 and 2008. GeoJournal, 78, 245258, doi:10.1007/s10708-011-9415-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., F. Tian, J. A. Smith, and H. Hu, 2014: Urban signatures in the spatial clustering of summer heavy rainfall events over the Beijing metropolitan region. J. Geophys. Res. Atmos., 119, 12031217, doi:10.1002/2013JD020762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., F. Tian, and D. Niyogi, 2015: A need to revisit hydrologic responses to urbanization by incorporating the feedback on spatial rainfall patterns. Urban Climate, 12, 128140, doi:10.1016/j.uclim.2015.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, S., M. Yaeger, E. Coopersmith, L. Cheng, and M. Sivapalan, 2012: Exploring the physical controls of regional patterns of flow duration curves—Part 2: Role of seasonality and associated process controls. Hydrol. Earth Syst. Sci., 16, 44474465, doi:10.5194/hess-16-4447-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, S., H. Li, S. Li, L. R. Leung, Y. Demissie, Q. Ran, and G. Blöschl, 2015: Vegetation regulation on streamflow intra-annual variability by adapting to climate variations. Geophys. Res. Lett., 42, 10 30710 315, doi:10.1002/2015GL066396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, A. R., C. E. Round, and A. Gustard, 2000: Spatial and temporal variations in the occurrence of low flow events in the UK. Hydrol. Earth Syst. Sci., 4, 3545, doi:10.5194/hess-4-35-2000.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1503 341 13
PDF Downloads 1303 261 8